These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27199346)

  • 21. The potential of
    Guan Y; Bak F; Hennessy RC; Horn Herms C; Elberg CL; Dresbøll DB; Winding A; Sapkota R; Nicolaisen MH
    mSphere; 2024 Jul; 9(7):e0029424. PubMed ID: 38904362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pathogen
    Cunrath O; Graulier G; Carballido-Lopez A; Pérard J; Forster A; Geoffroy VA; Saint Auguste P; Bumann D; Mislin GLA; Michaud-Soret I; Schalk IJ; Fechter P
    Metallomics; 2020 Dec; 12(12):2108-2120. PubMed ID: 33355556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin.
    Youard ZA; Mislin GL; Majcherczyk PA; Schalk IJ; Reimmann C
    J Biol Chem; 2007 Dec; 282(49):35546-53. PubMed ID: 17938167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.
    Shinde S; Zerbs S; Collart FR; Cumming JR; Noirot P; Larsen PE
    BMC Plant Biol; 2019 Jan; 19(1):4. PubMed ID: 30606121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Location and Survival of Mycorrhiza Helper Pseudomonas fluorescens during Establishment of Ectomycorrhizal Symbiosis between Laccaria bicolor and Douglas Fir.
    Frey-Klett P; Pierrat JC; Garbaye J
    Appl Environ Microbiol; 1997 Jan; 63(1):139-44. PubMed ID: 16535478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments.
    Dumas Z; Ross-Gillespie A; Kümmerli R
    Proc Biol Sci; 2013 Aug; 280(1764):20131055. PubMed ID: 23760867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine.
    Mossialos D; Meyer JM; Budzikiewicz H; Wolff U; Koedam N; Baysse C; Anjaiah V; Cornelis P
    Appl Environ Microbiol; 2000 Feb; 66(2):487-92. PubMed ID: 10653708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron removal from raw asbestos by siderophores-producing Pseudomonas.
    David SR; Ihiawakrim D; Regis R; Geoffroy VA
    J Hazard Mater; 2020 Mar; 385():121563. PubMed ID: 31776083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive modeling of siderphore production by Pseudomonas fluorescens under iron limitation.
    Fgaier H; Feher B; McKellar RC; Eberl HJ
    J Theor Biol; 2008 Mar; 251(2):348-62. PubMed ID: 18191154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis.
    Cusano AM; Burlinson P; Deveau A; Vion P; Uroz S; Preston GM; Frey-Klett P
    Environ Microbiol Rep; 2011 Apr; 3(2):203-10. PubMed ID: 23761252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere.
    Loper JE; Henkels MD
    Appl Environ Microbiol; 1999 Dec; 65(12):5357-63. PubMed ID: 10583989
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Kang D; Xu Q; Kirienko NV
    Microbiol Spectr; 2024 Mar; 12(3):e0369323. PubMed ID: 38311809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa.
    Ross-Gillespie A; Dumas Z; Kümmerli R
    J Evol Biol; 2015 Jan; 28(1):29-39. PubMed ID: 25421271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species.
    Youard ZA; Wenner N; Reimmann C
    Biometals; 2011 Jun; 24(3):513-22. PubMed ID: 21188474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics.
    Hazotte A; Péron O; Gaudin P; Abdelouas A; Lebeau T
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20680-20690. PubMed ID: 29752674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Siderophore-mediated iron uptake in fluorescent Pseudomonas: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines.
    Meyer JM; Geoffroy VA; Baysse C; Cornelis P; Barelmann I; Taraz K; Budzikiewicz H
    Arch Biochem Biophys; 2002 Jan; 397(2):179-83. PubMed ID: 11795869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental determinants of pyoverdine production, exploitation and competition in natural Pseudomonas communities.
    Butaitė E; Kramer J; Wyder S; Kümmerli R
    Environ Microbiol; 2018 Oct; 20(10):3629-3642. PubMed ID: 30003663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa.
    Elias S; Degtyar E; Banin E
    Microbiology (Reading); 2011 Jul; 157(Pt 7):2172-2180. PubMed ID: 21546589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms.
    Jeong GJ; Khan F; Tabassum N; Jo DM; Jung WK; Kim YM
    Res Microbiol; 2024; 175(7):104211. PubMed ID: 38734157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.