These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27199550)

  • 1. Modeling of the Glycolysis Pathway in Plasmodium falciparum using Petri Nets.
    Oyelade J; Isewon I; Rotimi S; Okunoren I
    Bioinform Biol Insights; 2016; 10():49-57. PubMed ID: 27199550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides.
    Fisher GM; Cobbold SA; Jezewski A; Carpenter EF; Arnold M; Cowell AN; Tjhin ET; Saliba KJ; Skinner-Adams TS; Lee MCS; Odom John A; Winzeler EA; McConville MJ; Poulsen SA; Andrews KT
    mBio; 2020 Dec; 11(6):. PubMed ID: 33293381
    [No Abstract]   [Full Text] [Related]  

  • 3. The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum.
    Dumont L; Richardson MB; van der Peet P; Marapana DS; Triglia T; Dixon MWA; Cowman AF; Williams SJ; Tilley L; McConville MJ; Cobbold SA
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing biological pathway models with hybrid functional Petri nets.
    Doi A; Fujita S; Matsuno H; Nagasaki M; Miyano S
    In Silico Biol; 2004; 4(3):271-91. PubMed ID: 15724280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities.
    Mehta M; Sonawat HM; Sharma S
    J Vector Borne Dis; 2006 Sep; 43(3):95-103. PubMed ID: 17024857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic enzymes as potential drug targets in Plasmodium falciparum.
    Subbayya IN; Ray SS; Balaram P; Balaram H
    Indian J Med Res; 1997 Aug; 106():79-94. PubMed ID: 9291679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate retards the development of erythrocytic stages of the human malaria parasite Plasmodium falciparum.
    Hikosaka K; Hirai M; Komatsuya K; Ono Y; Kita K
    Parasitol Int; 2015 Jun; 64(3):301-3. PubMed ID: 25176135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte sphingosine kinase regulates intraerythrocytic development of Plasmodium falciparum.
    Sah RK; Pati S; Saini M; Singh S
    Sci Rep; 2021 Jan; 11(1):1257. PubMed ID: 33441957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites.
    Roth EF; Calvin MC; Max-Audit I; Rosa J; Rosa R
    Blood; 1988 Dec; 72(6):1922-5. PubMed ID: 3058230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched tricarboxylic acid metabolism in Plasmodium falciparum.
    Olszewski KL; Mather MW; Morrisey JM; Garcia BA; Vaidya AB; Rabinowitz JD; Llinás M
    Nature; 2010 Aug; 466(7307):774-8. PubMed ID: 20686576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.
    Fang X; Reifman J; Wallqvist A
    Mol Biosyst; 2014 Oct; 10(10):2526-37. PubMed ID: 25001103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.
    Phaiphinit S; Pattaradilokrat S; Lursinsap C; Plaimas K
    Infect Genet Evol; 2016 Jan; 37():237-44. PubMed ID: 26626103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of signalling pathways in Plasmodium falciparum.
    Oyelade J; Ewejobi I; Brors B; Eils R; Adebiyi E
    Infect Genet Evol; 2011 Jun; 11(4):755-64. PubMed ID: 21112415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico.
    Fatumo S; Plaimas K; Mallm JP; Schramm G; Adebiyi E; Oswald M; Eils R; König R
    Infect Genet Evol; 2009 May; 9(3):351-8. PubMed ID: 18313365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle.
    Wallqvist A; Fang X; Tewari SG; Ye P; Reifman J
    BMC Syst Biol; 2016 Aug; 10(1):58. PubMed ID: 27502771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Identification of Metabolic Pathways of
    Oyelade J; Isewon I; Aromolaran O; Uwoghiren E; Dokunmu T; Rotimi S; Aworunse O; Obembe O; Adebiyi E
    Int J Genomics; 2019; 2019():1750291. PubMed ID: 31662957
    [No Abstract]   [Full Text] [Related]  

  • 17. Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites.
    Guggisberg AM; Frasse PM; Jezewski AJ; Kafai NM; Gandhi AY; Erlinger SJ; Odom John AR
    mBio; 2018 Nov; 9(6):. PubMed ID: 30425143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting glycolysis in the malaria parasite Plasmodium falciparum.
    van Niekerk DD; Penkler GP; du Toit F; Snoep JL
    FEBS J; 2016 Feb; 283(4):634-46. PubMed ID: 26648082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Host Glycolysis as a Strategy for Antimalarial Development.
    Jezewski AJ; Lin YH; Reisz JA; Culp-Hill R; Barekatain Y; Yan VC; D'Alessandro A; Muller FL; Odom John AR
    Front Cell Infect Microbiol; 2021; 11():730413. PubMed ID: 34604112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Analysis of
    Dillenberger M; Werner AD; Velten AS; Rahlfs S; Becker K; Fritz-Wolf K
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.