These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27199722)

  • 1. Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task.
    Ruddy KL; Rudolf AK; Kalkman B; King M; Daffertshofer A; Carroll TJ; Carson RG
    Front Hum Neurosci; 2016; 10():204. PubMed ID: 27199722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.
    Stöckel T; Carroll TJ; Summers JJ; Hinder MR
    J Neurophysiol; 2016 Aug; 116(2):575-86. PubMed ID: 27169508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions.
    Reissig P; Stöckel T; Garry MI; Summers JJ; Hinder MR
    Front Aging Neurosci; 2015; 7():222. PubMed ID: 26648867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability.
    Carroll TJ; Lee M; Hsu M; Sayde J
    J Appl Physiol (1985); 2008 Jun; 104(6):1656-64. PubMed ID: 18403447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute Effects of Strength and Skill Training on the Cortical and Spinal Circuits of Contralateral Limb.
    Capozio A; Chakrabarty S; Astill S
    J Mot Behav; 2024; 56(2):119-131. PubMed ID: 37788807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice.
    Lee M; Hinder MR; Gandevia SC; Carroll TJ
    J Physiol; 2010 Jan; 588(Pt 1):201-12. PubMed ID: 19917563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unilateral movement preparation causes task-specific modulation of TMS responses in the passive, opposite limb.
    Chye L; Riek S; de Rugy A; Carson RG; Carroll TJ
    J Physiol; 2018 Aug; 596(16):3725-3738. PubMed ID: 29775218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.
    Kidgell DJ; Frazer AK; Daly RM; Rantalainen T; Ruotsalainen I; Ahtiainen J; Avela J; Howatson G
    Neuroscience; 2015 Aug; 300():566-75. PubMed ID: 26037804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and Functional Cortical Connectivity Mediating Cross Education of Motor Function.
    Ruddy KL; Leemans A; Woolley DG; Wenderoth N; Carson RG
    J Neurosci; 2017 Mar; 37(10):2555-2564. PubMed ID: 28154150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications.
    Hinder MR; Carroll TJ; Summers JJ
    J Neurophysiol; 2013 Jun; 109(12):2963-71. PubMed ID: 23536709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle-specific variations in use-dependent crossed-facilitation of corticospinal pathways mediated by transcranial direct current (DC) stimulation.
    Carson RG; Kennedy NC; Linden MA; Britton L
    Neurosci Lett; 2008 Aug; 441(2):153-7. PubMed ID: 18582535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.
    Zult T; Goodall S; Thomas K; Hortobágyi T; Howatson G
    J Neurophysiol; 2015 Apr; 113(7):2262-70. PubMed ID: 25632077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual feedback alters the variations in corticospinal excitability that arise from rhythmic movements of the opposite limb.
    Carson RG; Welsh TN; Pamblanco-Valero MA
    Exp Brain Res; 2005 Mar; 161(3):325-34. PubMed ID: 15517219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that distinct human primary motor cortex circuits control discrete and rhythmic movements.
    Wiegel P; Kurz A; Leukel C
    J Physiol; 2020 Mar; 598(6):1235-1251. PubMed ID: 32057108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural pathways mediating cross education of motor function.
    Ruddy KL; Carson RG
    Front Hum Neurosci; 2013; 7():397. PubMed ID: 23908616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults.
    Hinder MR; Schmidt MW; Garry MI; Carroll TJ; Summers JJ
    J Appl Physiol (1985); 2011 Jan; 110(1):166-75. PubMed ID: 21088207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability.
    Yarossi M; Manuweera T; Adamovich SV; Tunik E
    Front Hum Neurosci; 2017; 11():242. PubMed ID: 28553218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review.
    Colomer-Poveda D; Romero-Arenas S; Hortobagyi T; Márquez G
    Neurologia (Engl Ed); 2021 May; 36(4):285-297. PubMed ID: 29305060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermanual transfer and bilateral cortical plasticity is maintained in older adults after skilled motor training with simple and complex tasks.
    Dickins DS; Sale MV; Kamke MR
    Front Aging Neurosci; 2015; 7():73. PubMed ID: 25999856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb.
    Jegatheeswaran G; Vesia M; Isayama R; Gunraj C; Chen R
    Neurosci Lett; 2018 Aug; 681():31-36. PubMed ID: 29787788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.