These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27200015)

  • 1. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures.
    Hernandez P; Picon-Cochard C
    Front Plant Sci; 2016; 7():538. PubMed ID: 27200015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grass-legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years.
    Helgadóttir Á; Suter M; Gylfadóttir TÓ; Kristjánsdóttir TA; Lüscher A
    Ann Bot; 2018 Aug; 122(2):337-348. PubMed ID: 29790908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity.
    Mason NW; Orwin K; Lambie S; Woodward SL; McCready T; Mudge P
    Ecol Evol; 2016 May; 6(10):3079-91. PubMed ID: 27092237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementarity among four highly productive grassland species depends on resource availability.
    Roscher C; Schmid B; Kolle O; Schulze ED
    Oecologia; 2016 Jun; 181(2):571-82. PubMed ID: 26932467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.
    Siebenkäs A; Schumacher J; Roscher C
    PLoS One; 2016; 11(6):e0158110. PubMed ID: 27341495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?
    Zhao Y; Li Z; Zhang J; Song H; Liang Q; Tao J; Cornelissen JH; Liu J
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):10640-10651. PubMed ID: 28283974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.
    Bachmann D; Gockele A; Ravenek JM; Roscher C; Strecker T; Weigelt A; Buchmann N
    PLoS One; 2015; 10(1):e0116367. PubMed ID: 25587998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar shifts biomass and element allocation of legume-grass mixtures in Cd-contaminated soils.
    Xiao Y; Wang L; Zhao Z; Che Y
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10835-10845. PubMed ID: 31950416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of plant diversity on functional trait variation of grass species.
    Gubsch M; Buchmann N; Schmid B; Schulze ED; Lipowsky A; Roscher C
    Ann Bot; 2011 Jan; 107(1):157-69. PubMed ID: 21068024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time.
    Ashworth AJ; Toler HD; Allen FL; Augé RM
    PLoS One; 2018; 13(7):e0200274. PubMed ID: 29990337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity?
    Niklaus PA; Baruffol M; He JS; Ma K; Schmid B
    Ecology; 2017 Apr; 98(4):1104-1116. PubMed ID: 28129429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking plant diversity-productivity relationships to plant functional traits of dominant species and changes in soil properties in 15-year-old experimental grasslands.
    Dietrich P; Eisenhauer N; Roscher C
    Ecol Evol; 2023 Mar; 13(3):e9883. PubMed ID: 36911317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences for traits associated with early N acquisition in a grain legume and early complementarity in grain legume-triticale mixtures.
    Carton N; Naudin C; Piva G; Baccar R; Corre-Hellou G
    AoB Plants; 2018 Feb; 10(1):ply001. PubMed ID: 29449911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased plant carbon translocation linked to overyielding in grassland species mixtures.
    De Deyn GB; Quirk H; Oakley S; Ostle NJ; Bardgett RD
    PLoS One; 2012; 7(9):e45926. PubMed ID: 23049893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Legume Intercropping With the Bioenergy Crop
    Nabel M; Schrey SD; Temperton VM; Harrison L; Jablonowski ND
    Front Plant Sci; 2018; 9():905. PubMed ID: 30013587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of arbuscular mycorrhizal fungi and root interaction on the competition between
    Ren H; Gao T; Hu J; Yang G
    PeerJ; 2017; 5():e4183. PubMed ID: 29340232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grasses procure key soil nutrients for clovers.
    Wei Z; Maxwell T; Robinson B; Dickinson N
    Nat Plants; 2022 Aug; 8(8):923-929. PubMed ID: 35941217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycorrhizal fungal identity and diversity relaxes plant-plant competition.
    Wagg C; Jansa J; Stadler M; Schmid B; van der Heijden MG
    Ecology; 2011 Jun; 92(6):1303-13. PubMed ID: 21797158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities.
    Mulder C; Jumpponen A; Högberg P; Huss-Danell K
    Oecologia; 2002 Nov; 133(3):412-421. PubMed ID: 28466208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment.
    Temperton VM; Mwangi PN; Scherer-Lorenzen M; Schmid B; Buchmann N
    Oecologia; 2007 Mar; 151(2):190-205. PubMed ID: 17048010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.