BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27200049)

  • 21. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia.
    Monfort P; Muñoz MD; Kosenko E; Llansola M; Sánchez-Pérez A; Cauli O; Felipo V
    Neurochem Int; 2004 Nov; 45(6):895-901. PubMed ID: 15312984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soluble guanylyl cyclase: more secrets revealed.
    Pyriochou A; Papapetropoulos A
    Cell Signal; 2005 Apr; 17(4):407-13. PubMed ID: 15601619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease.
    Domek-Łopacińska KU; Strosznajder JB
    Mol Neurobiol; 2010 Jun; 41(2-3):129-37. PubMed ID: 20213343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular genetics of retinal photoreceptor proteins involved in cGMP metabolism.
    Pittler SJ; Baehr W
    Prog Clin Biol Res; 1991; 362():33-66. PubMed ID: 1672236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes.
    Castro LR; Schittl J; Fischmeister R
    Circ Res; 2010 Nov; 107(10):1232-40. PubMed ID: 20847310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis.
    Wang Y; Krämer S; Loof T; Martini S; Kron S; Kawachi H; Shimizu F; Neumayer HH; Peters H
    Kidney Int; 2005 Jul; 68(1):47-61. PubMed ID: 15954895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors contributing to differences in the regulation of cGMP in isolated porcine pulmonary vessels.
    Bina S; Hart JL; Sei Y; Muldoon SM
    Eur J Pharmacol; 1998 Jun; 351(2):253-60. PubMed ID: 9687010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole brain spheroid cultures as a model to study the development of nitric oxide synthase-guanylate cyclase signal transduction.
    Teunissen CE; Steinbusch HW; Markerink-van Ittersum M ; De Bruijn C ; Axer H; De Vente J
    Brain Res Dev Brain Res; 2000 Dec; 125(1-2):99-115. PubMed ID: 11154766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of various phosphodiesterase-inhibitors, forskolin, and sodium nitroprusside on porcine detrusor smooth muscle tonic responses to muscarinergic stimulation and cyclic nucleotide levels in vitro.
    Truss MC; Uckert S; Stief CG; Kuczyk M; Schulz-Knappe P; Forssmann WG; Jonas U
    Neurourol Urodyn; 1996; 15(1):59-70. PubMed ID: 8696357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.
    Marondedze C; Wong A; Thomas L; Irving H; Gehring C
    Handb Exp Pharmacol; 2017; 238():87-103. PubMed ID: 26721677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylene blue, a soluble guanylyl cyclase inhibitor, reduces the sevoflurane minimum alveolar anesthetic concentration and decreases the brain cyclic guanosine monophosphate content in rats.
    Masaki E; Kondo I
    Anesth Analg; 1999 Aug; 89(2):484-9. PubMed ID: 10439772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide-mediated regulation of connexin43 expression and gap junctional intercellular communication in mesangial cells.
    Yao J; Hiramatsu N; Zhu Y; Morioka T; Takeda M; Oite T; Kitamura M
    J Am Soc Nephrol; 2005 Jan; 16(1):58-67. PubMed ID: 15537869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases].
    Świeżawska B; Marciniak K; Szmidt-Jaworska A
    Postepy Biochem; 2015; 61(2):168-75. PubMed ID: 26689009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide and cyclic guanosine monophosphate signaling in the eye.
    Murad F
    Can J Ophthalmol; 2008 Jun; 43(3):291-4. PubMed ID: 18443613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of cyclic guanosine monophosphate (cGMP) and cytosolic guanylate cyclase in the regulation of synaptic ribbon numbers in rat pineal gland.
    Spessert R; Gupta BB; Seidel A; Maitra SK; Vollrath L
    Brain Res; 1992 Jan; 570(1-2):231-6. PubMed ID: 1352171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase.
    Monfort P; Muñoz MD; Kosenko E; Felipo V
    J Neurosci; 2002 Dec; 22(23):10116-22. PubMed ID: 12451112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential alterations in responsiveness in particulate and soluble guanylate cyclases in pregnant guinea pig myometrium.
    Buhimschi IA; San Martin-Clark O; Aguan K; Thompson LP; Weiner CP
    Am J Obstet Gynecol; 2000 Dec; 183(6):1512-9. PubMed ID: 11120520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.