BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27200361)

  • 1. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.
    Sriyudthsak K; Shiraishi F; Hirai MY
    Front Mol Biosci; 2016; 3():15. PubMed ID: 27200361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using metabolome data for mathematical modeling of plant metabolic systems.
    Hirai MY; Shiraishi F
    Curr Opin Biotechnol; 2018 Dec; 54():138-144. PubMed ID: 30195121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A U-system approach for predicting metabolic behaviors and responses based on an alleged metabolic reaction network.
    Sriyudthsak K; Sawada Y; Chiba Y; Yamashita Y; Kanaya S; Onouchi H; Fujiwara T; Naito S; Voit EO; Shiraishi F; Hirai MY
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S4. PubMed ID: 25559748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PENDISC: a simple method for constructing a mathematical model from time-series data of metabolite concentrations.
    Sriyudthsak K; Iwata M; Hirai MY; Shiraishi F
    Bull Math Biol; 2014 Jun; 76(6):1333-51. PubMed ID: 24801819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new parametric method to smooth time-series data of metabolites in metabolic networks.
    Miyawaki A; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2016 Dec; 282():21-33. PubMed ID: 27693302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale models of plant metabolism.
    Simons M; Misra A; Sriram G
    Methods Mol Biol; 2014; 1083():213-30. PubMed ID: 24218218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomics enables precision medicine: "A White Paper, Community Perspective".
    Beger RD; Dunn W; Schmidt MA; Gross SS; Kirwan JA; Cascante M; Brennan L; Wishart DS; Oresic M; Hankemeier T; Broadhurst DI; Lane AN; Suhre K; Kastenmüller G; Sumner SJ; Thiele I; Fiehn O; Kaddurah-Daouk R;
    Metabolomics; 2016; 12(10):149. PubMed ID: 27642271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.
    Noecker C; Eng A; Srinivasan S; Theriot CM; Young VB; Jansson JK; Fredricks DN; Borenstein E
    mSystems; 2016; 1(1):. PubMed ID: 27239563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.
    Smith RW; van Rosmalen RP; Martins Dos Santos VAP; Fleck C
    BMC Syst Biol; 2018 Jun; 12(1):72. PubMed ID: 29914475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Network Modeling of Stem Cell Metabolism.
    Shen F; Cheek C; Chandrasekaran S
    Methods Mol Biol; 2019; 1975():305-320. PubMed ID: 31062316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using dynamic sensitivities to characterize metabolic reaction systems.
    Sriyudthsak K; Uno H; Gunawan R; Shiraishi F
    Math Biosci; 2015 Nov; 269():153-63. PubMed ID: 26384553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COVRECON: automated integration of genome- and metabolome-scale network reconstruction and data-driven inverse modeling of metabolic interaction networks.
    Li J; Waldherr S; Weckwerth W
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37402625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward genome-wide metabolotyping and elucidation of metabolic system: metabolic profiling of large-scale bioresources.
    Hirai MY; Sawada Y; Kanaya S; Kuromori T; Kobayashi M; Klausnitzer R; Hanada K; Akiyama K; Sakurai T; Saito K; Shinozaki K
    J Plant Res; 2010 May; 123(3):291-8. PubMed ID: 20369372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.
    Schwahn K; Küken A; Kliebenstein DJ; Fernie AR; Nikoloski Z
    Plant Physiol; 2016 Oct; 172(2):1324-1333. PubMed ID: 27566166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome.
    Tebani A; Afonso C; Bekri S
    J Inherit Metab Dis; 2018 May; 41(3):379-391. PubMed ID: 28840392
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.