These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 27200485)
1. Positron backscattering from solid targets: Modeling of scattering processes via various approaches. Kribaa B; Rouabah Z; Loirec CL; Champion C; Bouarissa N Micron; 2016 Aug; 87():46-50. PubMed ID: 27200485 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo calculations of electrons in aluminum. Aydin A Appl Radiat Isot; 2009 Feb; 67(2):281-6. PubMed ID: 18541434 [TBL] [Abstract][Full Text] [Related]
3. Backscattering coefficients for low energy positrons and electrons impinging on bulk solid targets. Bentabet A; Fenineche N J Phys Condens Matter; 2009 Mar; 21(9):095403. PubMed ID: 21817389 [TBL] [Abstract][Full Text] [Related]
4. Composition dependence of penetration range and backscattering coefficient of electrons impinging on Si Khan MA; Algarni H; Bouarissa N; Al-Hagan OA; Alhuwaymel TF Ultramicroscopy; 2018 Dec; 195():53-57. PubMed ID: 30193226 [TBL] [Abstract][Full Text] [Related]
5. The sensitivity of backscattering coefficients to elastic scattering cross-sections and electron stopping powers. Walker CG; Matthew JA; El-Gomati MM Scanning; 2014; 36(2):241-5. PubMed ID: 23649939 [TBL] [Abstract][Full Text] [Related]
6. Detailed Monte Carlo Simulation of electron transport and electron energy loss spectra. Attarian Shandiz M; Salvat F; Gauvin R Scanning; 2016 Nov; 38(6):475-491. PubMed ID: 26512795 [TBL] [Abstract][Full Text] [Related]
7. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport. Thomson R; Kawrakow I Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive open-access database of electron backscattering coefficients for energies ranging from 0.1 keV to 15 MeV. Akbari F Med Phys; 2023 Sep; 50(9):5920-5929. PubMed ID: 37470447 [TBL] [Abstract][Full Text] [Related]
9. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice. Liljequist D Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241 [TBL] [Abstract][Full Text] [Related]
10. Reflection of Fast Neutrons from Water. Berger MJ; Cooper JW J Res Natl Bur Stand A Phys Chem; 1959; 63A(2):101-144. PubMed ID: 31216144 [TBL] [Abstract][Full Text] [Related]
11. The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid. Wiciak-Pawłowska K; Winiarska A; Taioli S; Dapor M; Franz M; Franz J Molecules; 2023 Jan; 28(3):. PubMed ID: 36770793 [TBL] [Abstract][Full Text] [Related]
12. Remarks on some reference materials for applications in elastic peak electron spectroscopy. Jablonski A; Zemek J Anal Sci; 2010; 26(2):239-46. PubMed ID: 20145327 [TBL] [Abstract][Full Text] [Related]
13. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Champion C; Le Loirec C; Stosic B Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415 [TBL] [Abstract][Full Text] [Related]
14. An accurate approximation for the highly efficient sampling of polar scattering angle of electron elastic single-scattering events. Pasciak AS; Ford JR Scanning; 2006; 28(6):333-41. PubMed ID: 17181135 [TBL] [Abstract][Full Text] [Related]
15. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder. Mitri FG Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372 [TBL] [Abstract][Full Text] [Related]
16. Gamma backscattering analysis of flaw types and orientation based on Monte Carlo GEANT4 simulations. Wirawan R; Angraini LM; Qomariyah N; Waris A; Djamal M Appl Radiat Isot; 2020 Jan; 155():108924. PubMed ID: 31600632 [TBL] [Abstract][Full Text] [Related]
17. Electron elastic backscattering probability and inelastic mean free path. Tho TH; Nguyen-Truong HT J Phys Condens Matter; 2019 Oct; 31(41):415901. PubMed ID: 31284274 [TBL] [Abstract][Full Text] [Related]
18. Validity of the semi-classical approach for calculation of the surface excitation parameter. Da B; Mao SF; Ding ZJ J Phys Condens Matter; 2011 Oct; 23(39):395003. PubMed ID: 21918291 [TBL] [Abstract][Full Text] [Related]
19. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory. Semenov A; Babikov D J Phys Chem Lett; 2014 Jan; 5(2):275-8. PubMed ID: 26270699 [TBL] [Abstract][Full Text] [Related]
20. Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM. Ruan Z; Zeng RG; Ming Y; Zhang M; Da B; Mao SF; Ding ZJ Phys Chem Chem Phys; 2015 Jul; 17(27):17628-37. PubMed ID: 26082190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]