BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 27200489)

  • 21. Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole.
    Cesbron-Delauw MF; Gendrin C; Travier L; Ruffiot P; Mercier C
    Traffic; 2008 May; 9(5):657-64. PubMed ID: 18315533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis.
    Parab AR; McCall LI
    Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33526564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient invasion by Toxoplasma depends on the subversion of host protein networks.
    Guérin A; Corrales RM; Parker ML; Lamarque MH; Jacot D; El Hajj H; Soldati-Favre D; Boulanger MJ; Lebrun M
    Nat Microbiol; 2017 Oct; 2(10):1358-1366. PubMed ID: 28848228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism.
    Krishnan A; Kloehn J; Lunghi M; Chiappino-Pepe A; Waldman BS; Nicolas D; Varesio E; Hehl A; Lourido S; Hatzimanikatis V; Soldati-Favre D
    Cell Host Microbe; 2020 Feb; 27(2):290-306.e11. PubMed ID: 31991093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolomic changes in vertebrate host during malaria disease progression.
    Ghosh S; Pathak S; Sonawat HM; Sharma S; Sengupta A
    Cytokine; 2018 Dec; 112():32-43. PubMed ID: 30057363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei.
    Rajan KS; Adler K; Doniger T; Cohen-Chalamish S; Aharon-Hefetz N; Aryal S; Pilpel Y; Tschudi C; Unger R; Michaeli S
    J Biol Chem; 2022 Jul; 298(7):102141. PubMed ID: 35714765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.
    Srivastava A; Philip N; Hughes KR; Georgiou K; MacRae JI; Barrett MP; Creek DJ; McConville MJ; Waters AP
    PLoS Pathog; 2016 Dec; 12(12):e1006094. PubMed ID: 28027318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.
    Shah-Simpson S; Lentini G; Dumoulin PC; Burleigh BA
    PLoS Pathog; 2017 Nov; 13(11):e1006747. PubMed ID: 29176805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron and Heme Metabolism at the Leishmania-Host Interface.
    Laranjeira-Silva MF; Hamza I; Pérez-Victoria JM
    Trends Parasitol; 2020 Mar; 36(3):279-289. PubMed ID: 32005611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum.
    Subramanian A; Sarkar RR
    Sci Rep; 2017 Aug; 7(1):10262. PubMed ID: 28860532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of antiprotozoal drug mechanisms by metabolomics approaches.
    Creek DJ; Barrett MP
    Parasitology; 2014 Jan; 141(1):83-92. PubMed ID: 23734876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections.
    May DA; Taha F; Child MA; Ewald SE
    Trends Parasitol; 2023 Dec; 39(12):1074-1086. PubMed ID: 37839913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical Steps in Protein Export of Plasmodium falciparum Blood Stages.
    Spielmann T; Gilberger TW
    Trends Parasitol; 2015 Oct; 31(10):514-525. PubMed ID: 26433254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions.
    Seeber F; Limenitakis J; Soldati-Favre D
    Trends Parasitol; 2008 Oct; 24(10):468-78. PubMed ID: 18775675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the Physiological and Metabolic State of Leishmania Using Heavy Water Labeling.
    Kloehn J; McConville MJ
    Methods Mol Biol; 2020; 2116():587-609. PubMed ID: 32221944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trypanosoma brucei.
    Romero-Meza G; Mugnier MR
    Trends Parasitol; 2020 Jun; 36(6):571-572. PubMed ID: 31757771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy metabolism and its compartmentation in Trypanosoma brucei.
    Hellemond JJ; Bakker BM; Tielens AG
    Adv Microb Physiol; 2005; 50():199-226. PubMed ID: 16221581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism.
    McGwire BS; Kulkarni MM
    Exp Parasitol; 2010 Nov; 126(3):397-405. PubMed ID: 20159013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic pathways required for the intracellular survival of Leishmania.
    McConville MJ; Naderer T
    Annu Rev Microbiol; 2011; 65():543-61. PubMed ID: 21721937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.