These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2720085)

  • 1. Cooperative ligand-lattice binding. Approximate Gaussian binding distribution.
    Reiter J; Epstein IR
    Biophys Chem; 1989 Mar; 33(1):1-9. PubMed ID: 2720085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of binding site neighbor-effect parameters to evaluate the interactions between adjacent ligands on a linear lattice. Effects on ligand-lattice association.
    Wolfe AR; Meehan T
    J Mol Biol; 1992 Feb; 223(4):1063-87. PubMed ID: 1538390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of unselectively bound ligands along DNA.
    Lando DY; Nechipurenko YD
    J Biomol Struct Dyn; 2008 Oct; 26(2):187-96. PubMed ID: 18597540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analytic model for kinetics of hemoglobin reacting with ligand.
    Phillipson PE
    Biophys Chem; 1990 Aug; 37(1-3):91-5. PubMed ID: 2285806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of drug-DNA binding isotherms: a Monte Carlo approach.
    Correia JJ; Chaires JB
    Methods Enzymol; 1994; 240():593-614. PubMed ID: 7823850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative and non-cooperative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions.
    Epstein IR
    Biophys Chem; 1978 Sep; 8(4):327-39. PubMed ID: 728537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of cooperativity and equilibrium constants of ligands binding to G-quadruplex DNA in solution.
    Kudrev AG
    Talanta; 2013 Nov; 116():541-7. PubMed ID: 24148442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple origins of cooperativity in binding to multi-site lattices.
    Sackett DL; Saroff HA
    FEBS Lett; 1996 Nov; 397(1):1-6. PubMed ID: 8941702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative effects on binding of proteins to DNA.
    Nechipurenko YD; Gursky GV
    Biophys Chem; 1986 Aug; 24(3):195-209. PubMed ID: 3768466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters.
    Kowalczykowski SC; Paul LS; Lonberg N; Newport JW; McSwiggen JA; von Hippel PH
    Biochemistry; 1986 Mar; 25(6):1226-40. PubMed ID: 3486003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the cooperative binding of large ligands to a one-dimensional homogeneous lattice: the generalized three-state lattice model.
    Bujalowski W; Lohman TM; Anderson CF
    Biopolymers; 1989 Sep; 28(9):1637-43. PubMed ID: 2775853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative kinetics of ligand binding to linear polymers.
    Villaluenga JPG; Cao-García FJ
    Comput Struct Biotechnol J; 2022; 20():521-533. PubMed ID: 35495112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions.
    Overman LB; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):165-78. PubMed ID: 8107102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of cooperativity on the determination of dissociation constants: examination of the Cheng-Prusoff equation, the Scatchard analysis, the Schild analysis and related power equations.
    Cheng HC
    Pharmacol Res; 2004 Jul; 50(1):21-40. PubMed ID: 15082026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence distribution and intercooperativity detection for two ligands simultaneously binding to DNA.
    Torralba AS; Colmenarejo G; Montero F
    Biopolymers; 2001 May; 58(6):562-76. PubMed ID: 11246205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative coupling in allosteric systems.
    Czerlinski GH
    Biophys Chem; 1989 Oct; 34(2):169-75. PubMed ID: 2624881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of bivalent ligand-bivalent receptor aggregation: ring formation and the breakdown of the equivalent site approximation.
    Posner RG; Wofsy C; Goldstein B
    Math Biosci; 1995 Apr; 126(2):171-90. PubMed ID: 7703593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent potential approximation of random nearly isostatic kagome lattice.
    Mao X; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011111. PubMed ID: 21405665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody.
    Goldstein B; Posner RG; Torney DC; Erickson J; Holowka D; Baird B
    Biophys J; 1989 Nov; 56(5):955-66. PubMed ID: 2532552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a contaminating competitive ligand on ligand-binding curves. Inverse protein concentration dependence.
    Pedersen JB; Pedersen SM
    Biophys Chem; 1988 Oct; 32(1):79-87. PubMed ID: 3233316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.