These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 27203082)
1. Experimental Infection of Rhodnius prolixus (Hemiptera, Triatominae) with Mycobacterium leprae Indicates Potential for Leprosy Transmission. Neumann Ada S; Dias Fde A; Ferreira Jda S; Fontes AN; Rosa PS; Macedo RE; Oliveira JH; Teixeira RL; Pessolani MC; Moraes MO; Suffys PN; Oliveira PL; Sorgine MH; Lara FA PLoS One; 2016; 11(5):e0156037. PubMed ID: 27203082 [TBL] [Abstract][Full Text] [Related]
2. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Lavania M; Katoch K; Katoch VM; Gupta AK; Chauhan DS; Sharma R; Gandhi R; Chauhan V; Bansal G; Sachan P; Sachan S; Yadav VS; Jadhav R Infect Genet Evol; 2008 Sep; 8(5):627-31. PubMed ID: 18599381 [TBL] [Abstract][Full Text] [Related]
3. Development of a combined RLEP/16S rRNA (RT) qPCR assay for the detection of viable M. leprae from nasal swab samples. Beissner M; Woestemeier A; Saar M; Badziklou K; Maman I; Amedifou C; Wagner M; Wiedemann FX; Amekuse K; Kobara B; Herbinger KH; Kere AB; Löscher T; Bretzel G BMC Infect Dis; 2019 Aug; 19(1):753. PubMed ID: 31462296 [TBL] [Abstract][Full Text] [Related]
4. Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. Tió-Coma M; Wijnands T; Pierneef L; Schilling AK; Alam K; Roy JC; Faber WR; Menke H; Pieters T; Stevenson K; Richardus JH; Geluk A Sci Rep; 2019 Feb; 9(1):3165. PubMed ID: 30816338 [TBL] [Abstract][Full Text] [Related]
5. Presence of viable Mycobacterium leprae in environmental specimens around houses of leprosy patients. Turankar RP; Lavania M; Singh M; Sengupta U; Siva Sai K; Jadhav RS Indian J Med Microbiol; 2016; 34(3):315-21. PubMed ID: 27514953 [TBL] [Abstract][Full Text] [Related]
6. Persistence and distribution of Mycobacterium leprae in Aedes aegypti and Culex fatigans experimentally fed on leprosy patients. Narayanan E; Sreevatsa ; Raj AD; Kirchheimer WF; Bedi BM Lepr India; 1978 Jan; 50(1):26-37. PubMed ID: 349262 [TBL] [Abstract][Full Text] [Related]
7. Survival of Mycobacterium leprae and association with Acanthamoeba from environmental samples in the inhabitant areas of active leprosy cases: A cross sectional study from endemic pockets of Purulia, West Bengal. Turankar RP; Lavania M; Darlong J; Siva Sai KSR; Sengupta U; Jadhav RS Infect Genet Evol; 2019 Aug; 72():199-204. PubMed ID: 30658215 [TBL] [Abstract][Full Text] [Related]
8. Viability of Mycobacterium leprae in the environment and its role in leprosy dissemination. Mohanty PS; Naaz F; Katara D; Misba L; Kumar D; Dwivedi DK; Tiwari AK; Chauhan DS; Bansal AK; Tripathy SP; Katoch K Indian J Dermatol Venereol Leprol; 2016; 82(1):23-7. PubMed ID: 26728806 [TBL] [Abstract][Full Text] [Related]
9. Real-time PCR-based quantitation of viable Mycobacterium leprae strain from clinical samples and environmental sources and its genotype in multi-case leprosy families of India. Singh V; Turankar RP; Goel A Eur J Clin Microbiol Infect Dis; 2020 Nov; 39(11):2045-2055. PubMed ID: 32577954 [TBL] [Abstract][Full Text] [Related]
10. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. Ferreira JDS; Souza Oliveira DA; Santos JP; Ribeiro CCDU; Baêta BA; Teixeira RC; Neumann ADS; Rosa PS; Pessolani MCV; Moraes MO; Bechara GH; de Oliveira PL; Sorgine MHF; Suffys PN; Fontes ANB; Bell-Sakyi L; Fonseca AH; Lara FA PLoS Negl Trop Dis; 2018 Dec; 12(12):e0007001. PubMed ID: 30566440 [TBL] [Abstract][Full Text] [Related]
11. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
13. Mycobacterium leprae-host-cell interactions and genetic determinants in leprosy: an overview. Pinheiro RO; de Souza Salles J; Sarno EN; Sampaio EP Future Microbiol; 2011 Feb; 6(2):217-30. PubMed ID: 21366421 [TBL] [Abstract][Full Text] [Related]
14. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus. Soares TS; Buarque DS; Queiroz BR; Gomes CM; Braz GR; Araújo RN; Pereira MH; Guarneri AA; Tanaka AS Biochimie; 2015 May; 112():41-8. PubMed ID: 25731714 [TBL] [Abstract][Full Text] [Related]
15. [Attalea butyracea palms adjacent to housing as a source of infestation by Rhodnius prolixus (Hemiptera: Reduviidae)]. Angulo VM; Esteban L; Luna KP Biomedica; 2012 Jun; 32(2):277-85. PubMed ID: 23242302 [TBL] [Abstract][Full Text] [Related]
16. Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy. Turankar RP; Lavania M; Chaitanya VS; Sengupta U; Darlong J; Darlong F; Siva Sai KS; Jadhav RS Clin Microbiol Infect; 2014 Mar; 20(3):O142-9. PubMed ID: 24520878 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of the Parasite Load in the Digestive Tract of Rhodnius prolixus by Combined qPCR Analysis and Imaging Techniques Provides New Insights into the Trypanosome Life Cycle. Dias Fde A; Guerra B; Vieira LR; Perdomo HD; Gandara AC; Amaral RJ; Vollú RE; Gomes SA; Lara FA; Sorgine MH; Medei E; de Oliveira PL; Salmon D PLoS Negl Trop Dis; 2015; 9(10):e0004186. PubMed ID: 26496442 [TBL] [Abstract][Full Text] [Related]
18. Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. da Silva MB; Portela JM; Li W; Jackson M; Gonzalez-Juarrero M; Hidalgo AS; Belisle JT; Bouth RC; Gobbo AR; Barreto JG; Minervino AHH; Cole ST; Avanzi C; Busso P; Frade MAC; Geluk A; Salgado CG; Spencer JS PLoS Negl Trop Dis; 2018 Jun; 12(6):e0006532. PubMed ID: 29953440 [TBL] [Abstract][Full Text] [Related]
19. High frequency of M. leprae DNA detection in asymptomatic household contacts. Gama RS; Gomides TAR; Gama CFM; Moreira SJM; de Neves Manta FS; de Oliveira LBP; Marçal PHF; Sarno EN; Moraes MO; Garcia RMG; de Oliveira Fraga LA BMC Infect Dis; 2018 Apr; 18(1):153. PubMed ID: 29609530 [TBL] [Abstract][Full Text] [Related]
20. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]