These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 27203118)

  • 21. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.
    Liu Y; Guo J; Zhu E; Liao L; Lee SJ; Ding M; Shakir I; Gambin V; Huang Y; Duan X
    Nature; 2018 May; 557(7707):696-700. PubMed ID: 29769729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Fermi-Level-Pinning-Free 1D Electrical Contact at the Intrinsic 2D MoS
    Yang Z; Kim C; Lee KY; Lee M; Appalakondaiah S; Ra CH; Watanabe K; Taniguchi T; Cho K; Hwang E; Hone J; Yoo WJ
    Adv Mater; 2019 Jun; 31(25):e1808231. PubMed ID: 31066475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schottky barrier lowering due to interface states in 2D heterophase devices.
    Jelver L; Stradi D; Stokbro K; Jacobsen KW
    Nanoscale Adv; 2021 Jan; 3(2):567-574. PubMed ID: 36131736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer.
    Yoon HH; Jung S; Choi G; Kim J; Jeon Y; Kim YS; Jeong HY; Kim K; Kwon SY; Park K
    Nano Lett; 2017 Jan; 17(1):44-49. PubMed ID: 27960259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Assembled Monolayer Doping for MoTe
    Lee DH; Rabeel M; Han Y; Kim H; Khan MF; Kim DK; Yoo H
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37878262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monolayer Bismuthene-Metal Contacts: A Theoretical Study.
    Guo Y; Pan F; Ye M; Sun X; Wang Y; Li J; Zhang X; Zhang H; Pan Y; Song Z; Yang J; Lu J
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23128-23140. PubMed ID: 28597660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.
    Su J; Feng L; Zhang Y; Liu Z
    Phys Chem Chem Phys; 2016 Jun; 18(25):16882-9. PubMed ID: 27282959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thickness Trends of Electron and Hole Conduction and Contact Carrier Injection in Surface Charge Transfer Doped 2D Field Effect Transistors.
    Arnold AJ; Schulman DS; Das S
    ACS Nano; 2020 Oct; 14(10):13557-13568. PubMed ID: 33026795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors.
    Fan ZQ; Jiang XW; Chen J; Luo JW
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homogeneous 2D MoTe
    Chen J; Zhu J; Wang Q; Wan J; Liu R
    Small; 2020 Jul; 16(30):e2001428. PubMed ID: 32578379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. van der Waals Epitaxy of High-Mobility Polymorphic Structure of Mo
    Lee RS; Kim D; Pawar SA; Kim T; Shin JC; Kang SW
    ACS Nano; 2019 Jan; 13(1):642-648. PubMed ID: 30609346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. n- and p-type ohmic contacts at monolayer gallium nitride-metal interfaces.
    Guo Y; Pan F; Ren Y; Yao B; Yang C; Ye M; Wang Y; Li J; Zhang X; Yan J; Yang J; Lu J
    Phys Chem Chem Phys; 2018 Oct; 20(37):24239-24249. PubMed ID: 30209481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of an MoTe
    Aftab S; Iqbal MW; Afzal AM; Khan MF; Hussain G; Waheed HS; Kamran MA
    RSC Adv; 2019 Mar; 9(18):10017-10023. PubMed ID: 35520896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Schottky barrier heights and reduced Fermi-level pinning in monolayer CVD-grown MoS
    Xie J; Patoary NM; Zhou G; Sayyad MY; Tongay S; Esqueda IS
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35172287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Method to Determine the Schottky Barrier in Few-Layer Black Phosphorus Metal Contacts.
    Lee SY; Yun WS; Lee JD
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7873-7877. PubMed ID: 28182398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides.
    Guo Y; Liu D; Robertson J
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25709-15. PubMed ID: 26523332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable P- and N-Type Conversion of MoTe
    Park YJ; Katiyar AK; Hoang AT; Ahn JH
    Small; 2019 Jul; 15(28):e1901772. PubMed ID: 31099978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions.
    Zhang X; Liu B; Gao L; Yu H; Liu X; Du J; Xiao J; Liu Y; Gu L; Liao Q; Kang Z; Zhang Z; Zhang Y
    Nat Commun; 2021 Mar; 12(1):1522. PubMed ID: 33750797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of Charge Carrier Polarity in MoTe
    Kim H; Uddin I; Watanabe K; Taniguchi T; Whang D; Kim GH
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.