These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 27203127)
1. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses. Ringbæk TP; Weber U; Santiago A; Simeonov Y; Fritz P; Krämer M; Wittig A; Bassler N; Engenhart-Cabillic R; Zink K Phys Med Biol; 2016 Jun; 61(11):4327-41. PubMed ID: 27203127 [TBL] [Abstract][Full Text] [Related]
2. Validation of new 2D ripple filters in proton treatments of spherical geometries and non-small cell lung carcinoma cases. Ringbæk TP; Weber U; Santiago A; Iancu G; Wittig A; Grzanka L; Bassler N; Engenhart-Cabillic R; Zink K Phys Med Biol; 2018 Dec; 63(24):245020. PubMed ID: 30523868 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo simulations of new 2D ripple filters for particle therapy facilities. Ringbæk TP; Weber U; Petersen JB; Thomsen B; Bassler N Acta Oncol; 2014 Jan; 53(1):40-9. PubMed ID: 24050575 [TBL] [Abstract][Full Text] [Related]
4. Fluence inhomogeneities due to a ripple filter induced Moiré effect. Ringbæk TP; Brons S; Naumann J; Ackermann B; Horn J; Latzel H; Scheloske S; Galonska M; Bassler N; Zink K; Weber U Phys Med Biol; 2015 Feb; 60(3):N59-69. PubMed ID: 25590354 [TBL] [Abstract][Full Text] [Related]
5. Application of lung substitute material as ripple filter for multi-ion therapy with helium-, carbon-, oxygen-, and neon-ion beams. Inaniwa T; Abe Y; Suzuki M; Lee SH; Mizushima K; Nakaji T; Sakata D; Sato S; Iwata Y; Kanematsu N; Shirai T Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 33477116 [TBL] [Abstract][Full Text] [Related]
6. Development of ripple filter composed of metal mesh for charged-particle therapy. Tanaka S; Inaniwa T; Matsuba S Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35667368 [No Abstract] [Full Text] [Related]
7. 3D range-modulator for scanned particle therapy: development, Monte Carlo simulations and experimental evaluation. Simeonov Y; Weber U; Penchev P; Ringbæk TP; Schuy C; Brons S; Engenhart-Cabillic R; Bliedtner J; Zink K Phys Med Biol; 2017 Aug; 62(17):7075-7096. PubMed ID: 28741595 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy. Grevillot L; Stock M; Vatnitsky S Phys Med Biol; 2015 Oct; 60(20):7985-8005. PubMed ID: 26418366 [TBL] [Abstract][Full Text] [Related]
9. Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy. Sakama M; Kanai T; Kase Y; Yusa K; Tashiro M; Torikai K; Shimada H; Yamada S; Ohno T; Nakano T Phys Med Biol; 2012 Oct; 57(20):6615-33. PubMed ID: 23022653 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy. Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284 [TBL] [Abstract][Full Text] [Related]
11. Dose-shaping using targeted sparse optimization. Sayre GA; Ruan D Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415 [TBL] [Abstract][Full Text] [Related]
12. A simple method to import CAD mesh format models in FLUKA. Dong S; Sheng Y; Wang J; Hu W J Appl Clin Med Phys; 2023 Nov; 24(11):e14107. PubMed ID: 37563859 [TBL] [Abstract][Full Text] [Related]
13. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Bazalova-Carter M; Qu B; Palma B; Hårdemark B; Hynning E; Jensen C; Maxim PG; Loo BW Med Phys; 2015 May; 42(5):2615-25. PubMed ID: 25979053 [TBL] [Abstract][Full Text] [Related]
14. Modulation power of porous materials and usage as ripple filter in particle therapy. Printz Ringbæk T; Simeonov Y; Witt M; Engenhart-Cabillic R; Kraft G; Zink K; Weber U Phys Med Biol; 2017 Apr; 62(7):2892-2909. PubMed ID: 28140381 [TBL] [Abstract][Full Text] [Related]
15. Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods. Henzen D; Manser P; Frei D; Volken W; Neuenschwander H; Born EJ; Lössl K; Aebersold DM; Stampanoni MF; Fix MK Med Phys; 2014 Mar; 41(3):031712. PubMed ID: 24593716 [TBL] [Abstract][Full Text] [Related]
16. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy. Mirandola A; Molinelli S; Vilches Freixas G; Mairani A; Gallio E; Panizza D; Russo S; Ciocca M; Donetti M; Magro G; Giordanengo S; Orecchia R Med Phys; 2015 Sep; 42(9):5287-300. PubMed ID: 26328978 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Lee EK; Fox T; Crocker I Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912 [TBL] [Abstract][Full Text] [Related]
18. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Tessonnier T; Mairani A; Brons S; Sala P; Cerutti F; Ferrari A; Haberer T; Debus J; Parodi K Phys Med Biol; 2017 Aug; 62(16):6784-6803. PubMed ID: 28762335 [TBL] [Abstract][Full Text] [Related]
19. Dosimetric effect of the low dose envelope associated with different beam models for carbon-ion spot scanning beam delivery. Zhang H; Dai T; Liu X; Chen W; Ma Y; He P; Shen G; Yuan P; Dai Z; Li Q Acta Oncol; 2019 Dec; 58(12):1790-1793. PubMed ID: 31368396 [No Abstract] [Full Text] [Related]
20. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy. Shirey RJ; Wu HT J Appl Clin Med Phys; 2018 Jan; 19(1):164-173. PubMed ID: 29239528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]