These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27203179)

  • 1. Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae.
    Zhao G; Chen Y; Carey L; Futcher B
    Mol Cell; 2016 May; 62(4):546-57. PubMed ID: 27203179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
    Ewald JC; Kuehne A; Zamboni N; Skotheim JM
    Mol Cell; 2016 May; 62(4):532-45. PubMed ID: 27203178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle].
    Koltovaya NA
    Genetika; 2013 Jul; 49(7):797-813. PubMed ID: 24450149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae].
    Lv Y; Xiao D; He D; Guo X
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization.
    Jules M; Beltran G; François J; Parrou JL
    Appl Environ Microbiol; 2008 Feb; 74(3):605-14. PubMed ID: 18065618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae.
    Mendenhall MD; Hodge AE
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1191-243. PubMed ID: 9841670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae.
    Garre E; Pérez-Torrado R; Gimeno-Alcañiz JV; Matallana E
    FEMS Yeast Res; 2009 Feb; 9(1):52-62. PubMed ID: 19016884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle.
    Papagiannakis A; Niebel B; Wit EC; Heinemann M
    Mol Cell; 2017 Jan; 65(2):285-295. PubMed ID: 27989441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28.
    Edgington NP; Blacketer MJ; Bierwagen TA; Myers AM
    Mol Cell Biol; 1999 Feb; 19(2):1369-80. PubMed ID: 9891070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human trehalase is a stress responsive protein in Saccharomyces cerevisiae.
    Ouyang Y; Xu Q; Mitsui K; Motizuki M; Xu Z
    Biochem Biophys Res Commun; 2009 Feb; 379(2):621-5. PubMed ID: 19126402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway.
    Sunnarborg SW; Miller SP; Unnikrishnan I; LaPorte DC
    Yeast; 2001 Dec; 18(16):1505-14. PubMed ID: 11748727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae.
    Bryan BA; McGrew E; Lu Y; Polymenis M
    Mol Genet Genomics; 2004 Feb; 271(1):72-81. PubMed ID: 14648201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J
    Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2.
    Benjamin KR; Zhang C; Shokat KM; Herskowitz I
    Genes Dev; 2003 Jun; 17(12):1524-39. PubMed ID: 12783856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico and in vivo analysis reveal a novel gene in Saccharomyces cerevisiae trehalose metabolism.
    De Mesquita JF; Panek AD; de Araujo PS
    BMC Genomics; 2003 Nov; 4(1):45. PubMed ID: 14614785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of cyclin-dependent kinase phosphorylation substrates.
    Chang EJ; Begum R; Chait BT; Gaasterland T
    PLoS One; 2007 Aug; 2(7):e656. PubMed ID: 17668044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p.
    Wilson WA; Wang Z; Roach PJ
    Biochem Biophys Res Commun; 2005 Apr; 329(1):161-7. PubMed ID: 15721288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation at the CK2 phosphorylation site on Cdc28 affects kinase activity and cell size in Saccharomyces cerevisiae.
    Russo GL; van den Bos C; Marshak DR
    Mol Cell Biochem; 2001 Nov; 227(1-2):113-7. PubMed ID: 11827161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function.
    Parrou JL; Jules M; Beltran G; François J
    FEMS Yeast Res; 2005 Apr; 5(6-7):503-11. PubMed ID: 15780651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p.
    Wang Z; Wilson WA; Fujino MA; Roach PJ
    FEBS Lett; 2001 Oct; 506(3):277-80. PubMed ID: 11602261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.