These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27203277)
1. A Chemical Approach To Break the Planar Configuration of Ag Nanocubes into Tunable Two-Dimensional Metasurfaces. Yang Y; Lee YH; Phang IY; Jiang R; Sim HY; Wang J; Ling XY Nano Lett; 2016 Jun; 16(6):3872-8. PubMed ID: 27203277 [TBL] [Abstract][Full Text] [Related]
2. Assembling substrate-less plasmonic metacrystals at the oil/water interface for multiplex ultratrace analyte detection. Lee YH; Lee HK; Ho JY; Yang Y; Ling XY Analyst; 2016 Aug; 141(17):5107-12. PubMed ID: 27405973 [TBL] [Abstract][Full Text] [Related]
3. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Camargo PH; Cobley CM; Rycenga M; Xia Y Nanotechnology; 2009 Oct; 20(43):434020. PubMed ID: 19801754 [TBL] [Abstract][Full Text] [Related]
4. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617 [TBL] [Abstract][Full Text] [Related]
5. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956 [TBL] [Abstract][Full Text] [Related]
6. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing. Tan JM; Ruan JJ; Lee HK; Phang IY; Ling XY Phys Chem Chem Phys; 2014 Dec; 16(48):26983-90. PubMed ID: 25380327 [TBL] [Abstract][Full Text] [Related]
7. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering. Moran CH; Rycenga M; Zhang Q; Xia Y J Phys Chem C Nanomater Interfaces; 2011 Nov; 115(44):21852-21857. PubMed ID: 22348152 [TBL] [Abstract][Full Text] [Related]
8. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance. Li L; Chin WS ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289 [TBL] [Abstract][Full Text] [Related]
9. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes. El-Saeed AH; Allam NK Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Lee YH; Shi W; Lee HK; Jiang R; Phang IY; Cui Y; Isa L; Yang Y; Wang J; Li S; Ling XY Nat Commun; 2015 Apr; 6():6990. PubMed ID: 25923409 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices. Li J; Liu X; Jin J; Yan N; Jiang W Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002 [TBL] [Abstract][Full Text] [Related]
12. Mie-Resonant Three-Dimensional Metacrystals. Kim S; Zheng CY; Schatz GC; Aydin K; Kim KH; Mirkin CA Nano Lett; 2020 Nov; 20(11):8096-8101. PubMed ID: 33054221 [TBL] [Abstract][Full Text] [Related]
13. DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. Niu R; Song C; Gao F; Fang W; Jiang X; Ren S; Zhu D; Su S; Chao J; Chen S; Fan C; Wang L Angew Chem Int Ed Engl; 2021 May; 60(21):11695-11701. PubMed ID: 33694256 [TBL] [Abstract][Full Text] [Related]
14. Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Tavakkoli Yaraki M; Daqiqeh Rezaei S; Tan YN Phys Chem Chem Phys; 2020 Mar; 22(10):5673-5687. PubMed ID: 32103209 [TBL] [Abstract][Full Text] [Related]
15. Facet-selective deposition of Au and Pt on Ag nanocubes for the fabrication of bifunctional Ag@Au-Pt nanocubes and trimetallic nanoboxes. Zhang Z; Ahn J; Kim J; Wu Z; Qin D Nanoscale; 2018 May; 10(18):8642-8649. PubMed ID: 29700542 [TBL] [Abstract][Full Text] [Related]
16. Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures. Kundu S; Dai W; Chen Y; Ma L; Yue Y; Sinyukov AM; Liang H J Colloid Interface Sci; 2017 Jul; 498():248-262. PubMed ID: 28342308 [TBL] [Abstract][Full Text] [Related]
17. Surface-coverage dependence of surface-enhanced raman scattering from gold nanocubes on self-assembled monolayers of analyte. Sisco PN; Murphy CJ J Phys Chem A; 2009 Apr; 113(16):3973-8. PubMed ID: 19271748 [TBL] [Abstract][Full Text] [Related]
18. Enriching Silver Nanocrystals with a Second Noble Metal. Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. Rong Z; Xiao R; Wang C; Wang D; Wang S Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410 [TBL] [Abstract][Full Text] [Related]