These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27203336)

  • 1. Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator.
    Lin W; Chen K; Zhang S; Chien CL
    Phys Rev Lett; 2016 May; 116(18):186601. PubMed ID: 27203336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiferromagnonic spin transport from Y3Fe5O12 into NiO.
    Wang H; Du C; Hammel PC; Yang F
    Phys Rev Lett; 2014 Aug; 113(9):097202. PubMed ID: 25216003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Detection of Spin Backflow from an Antiferromagnetic Insulator/Y_{3}Fe_{5}O_{12} Interface.
    Lin W; Chien CL
    Phys Rev Lett; 2017 Feb; 118(6):067202. PubMed ID: 28234519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin colossal magnetoresistance in an antiferromagnetic insulator.
    Qiu Z; Hou D; Barker J; Yamamoto K; Gomonay O; Saitoh E
    Nat Mater; 2018 Jul; 17(7):577-580. PubMed ID: 29807985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Interfacial Roughness Spin Scattering on the Spin Current Transport in YIG/NiO/Pt Heterostructures.
    Jin L; Jia K; Zhang D; Liu B; Meng H; Tang X; Zhong Z; Zhang H
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35458-35467. PubMed ID: 31483597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces.
    Heinrich B; Burrowes C; Montoya E; Kardasz B; Girt E; Song YY; Sun Y; Wu M
    Phys Rev Lett; 2011 Aug; 107(6):066604. PubMed ID: 21902353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processed Ferrimagnetic Insulator Thin Film for the Microelectronic Spin Seebeck Energy Conversion.
    Oh I; Park J; Jo J; Jin MJ; Jang MS; Lee KS; Yoo JW
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28608-28614. PubMed ID: 30079725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Spin Conductance of a Thin-Film Insulating Antiferromagnet.
    Bender SA; Skarsvåg H; Brataas A; Duine RA
    Phys Rev Lett; 2017 Aug; 119(5):056804. PubMed ID: 28949746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure.
    Wang S; Zou L; Zhang X; Cai J; Wang S; Shen B; Sun J
    Nanoscale; 2015 Nov; 7(42):17812-9. PubMed ID: 26455519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Spin Dynamics of Yttrium Iron Garnet.
    Barker J; Bauer GE
    Phys Rev Lett; 2016 Nov; 117(21):217201. PubMed ID: 27911554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering.
    Wang Z; Sun Y; Wu M; Tiberkevich V; Slavin A
    Phys Rev Lett; 2011 Sep; 107(14):146602. PubMed ID: 22107222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer.
    Lu L; Sun Y; Jantz M; Wu M
    Phys Rev Lett; 2012 Jun; 108(25):257202. PubMed ID: 23004648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse spin Hall effect in a ferromagnetic metal.
    Miao BF; Huang SY; Qu D; Chien CL
    Phys Rev Lett; 2013 Aug; 111(6):066602. PubMed ID: 23971597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures.
    Victor RT; Marroquin JFR; Safeer SH; Dugato DA; Archanjo BS; Sampaio LC; Garcia F; Felix JF
    Nanoscale Horiz; 2023 Oct; 8(11):1568-1576. PubMed ID: 37671742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of the spin Peltier effect for magnetic insulators.
    Flipse J; Dejene FK; Wagenaar D; Bauer GE; Ben Youssef J; van Wees BJ
    Phys Rev Lett; 2014 Jul; 113(2):027601. PubMed ID: 25062233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiferromagnetic proximity effect in epitaxial CoO/NiO/MgO(001) systems.
    Li Q; Liang JH; Luo YM; Ding Z; Gu T; Hu Z; Hua CY; Lin HJ; Pi TW; Kang SP; Won C; Wu YZ
    Sci Rep; 2016 Mar; 6():22355. PubMed ID: 26932164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Coverage Dependence of Spin-to-Charge Current across Pt/MoS
    Lee WY; Park NW; Kang MS; Kim GS; Jang HW; Saitoh E; Lee SK
    J Phys Chem Lett; 2020 Jul; 11(13):5338-5344. PubMed ID: 32558573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical origins of the new magnetoresistance in Pt/YIG.
    Miao BF; Huang SY; Qu D; Chien CL
    Phys Rev Lett; 2014 Jun; 112(23):236601. PubMed ID: 24972219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length Scale of the Spin Seebeck Effect.
    Kehlberger A; Ritzmann U; Hinzke D; Guo EJ; Cramer J; Jakob G; Onbasli MC; Kim DH; Ross CA; Jungfleisch MB; Hillebrands B; Nowak U; Kläui M
    Phys Rev Lett; 2015 Aug; 115(9):096602. PubMed ID: 26371671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning of Magnetic Damping in Y
    Krysztofik A; Kuznetsov N; Qin H; Flajšman L; Coy E; van Dijken S
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.