These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27203727)

  • 1. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking classical and molecular optomechanics descriptions of SERS.
    Schmidt MK; Esteban R; Benz F; Baumberg JJ; Aizpurua J
    Faraday Discuss; 2017 Dec; 205():31-65. PubMed ID: 28933479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode.
    Zhang Y; Esteban R; Boto RA; Urbieta M; Arrieta X; Shan C; Li S; Baumberg JJ; Aizpurua J
    Nanoscale; 2021 Jan; 13(3):1938-1954. PubMed ID: 33442716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear valley phonon scattering under the strong coupling regime.
    Liu X; Yi J; Yang S; Lin EC; Zhang YJ; Zhang P; Li JF; Wang Y; Lee YH; Tian ZQ; Zhang X
    Nat Mater; 2021 Sep; 20(9):1210-1215. PubMed ID: 33846584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.
    Roelli P; Galland C; Piro N; Kippenberg TJ
    Nat Nanotechnol; 2016 Feb; 11(2):164-9. PubMed ID: 26595330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Scattering of Raman Photons from Cavity-QED Systems in the Ultrastrong Coupling Regime.
    Macrì V; Mercurio A; Nori F; Savasta S; Sánchez Muñoz C
    Phys Rev Lett; 2022 Dec; 129(27):273602. PubMed ID: 36638299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas.
    Kharintsev SS; Kharitonov AV; Saikin SK; Alekseev AM; Kazarian SG
    Nano Lett; 2017 Sep; 17(9):5533-5539. PubMed ID: 28813607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.
    Liu P; Chulhai DV; Jensen L
    ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.
    Kneipp J; Kneipp K
    ACS Nano; 2024 Aug; 18(32):20851-20860. PubMed ID: 39088308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study.
    Crampton KT; Fast A; Potma EO; Apkarian VA
    Nano Lett; 2018 Sep; 18(9):5791-5796. PubMed ID: 30064221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity.
    Xu Y; Hu H; Chen W; Suo P; Zhang Y; Zhang S; Xu H
    ACS Nano; 2022 Aug; 16(8):12711-12719. PubMed ID: 35867404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule analysis by surfaced-enhanced Raman scattering.
    Pieczonka NP; Aroca RF
    Chem Soc Rev; 2008 May; 37(5):946-54. PubMed ID: 18443680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid.
    Vento V; Tarrago Velez S; Pogrebna A; Galland C
    Nat Commun; 2023 May; 14(1):2818. PubMed ID: 37198190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Plasmonics.
    Wilson AJ; Willets KA
    Annu Rev Anal Chem (Palo Alto Calif); 2016 Jun; 9(1):27-43. PubMed ID: 27049633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.