These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27203748)

  • 1. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans.
    Wang Y; Breedveld S; Heijmen B; Petit SF
    Phys Med Biol; 2016 Jun; 61(11):4268-82. PubMed ID: 27203748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive performance of an OVH-based treatment planning quality assurance model for prostate VMAT: Assessing dependence on training cohort size and composition.
    Burton A; Norvill C; Ebert MA
    Med Dosim; 2019 Winter; 44(4):315-323. PubMed ID: 30522800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective clinical validation of independent DVH prediction for plan QA in automatic treatment planning for prostate cancer patients.
    Wang Y; Heijmen BJM; Petit SF
    Radiother Oncol; 2017 Dec; 125(3):500-506. PubMed ID: 29061497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer.
    Wang Y; Zolnay A; Incrocci L; Joosten H; McNutt T; Heijmen B; Petit S
    Radiother Oncol; 2013 Jun; 107(3):352-7. PubMed ID: 23830193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge-based dose prediction models for head and neck cancer are strongly affected by interorgan dependency and dataset inconsistency.
    Wang Y; Heijmen BJM; Petit SF
    Med Phys; 2019 Feb; 46(2):934-943. PubMed ID: 30506855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative comparison of automatic and manual IMRT optimization for prostate cancer: the benefits of DVH prediction.
    Yang Y; Li T; Yuan L; Ge Y; Yin FF; Lee WR; Wu QJ
    J Appl Clin Med Phys; 2015 Mar; 16(2):5204. PubMed ID: 26103191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of database quality in knowledge-based treatment planning for prostate cancer.
    Wall PDH; Carver RL; Fontenot JD
    Pract Radiat Oncol; 2018; 8(6):437-444. PubMed ID: 29730280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection.
    Yang Y; Ford EC; Wu B; Pinkawa M; van Triest B; Campbell P; Song DY; McNutt TR
    Med Phys; 2013 Jan; 40(1):011709. PubMed ID: 23298079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction.
    Cagni E; Botti A; Wang Y; Iori M; Petit SF; Heijmen BJM
    Phys Med; 2018 Nov; 55():98-106. PubMed ID: 30471826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in treatment planning calculations motivated by tightening IMRT QA tolerances.
    Stambaugh C; Gagneur J; Uejo A; Clouser E; Ezzell G
    J Appl Clin Med Phys; 2019 Jan; 20(1):250-257. PubMed ID: 30599085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning.
    Good D; Lo J; Lee WR; Wu QJ; Yin FF; Das SK
    Int J Radiat Oncol Biol Phys; 2013 Sep; 87(1):176-81. PubMed ID: 23623460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated generation of IMRT treatment plans for prostate cancer patients with metal hip prostheses: comparison of different planning strategies.
    Voet PW; Dirkx ML; Breedveld S; Heijmen BJ
    Med Phys; 2013 Jul; 40(7):071704. PubMed ID: 23822408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved distance-to-dose correlation for predicting bladder and rectum dose-volumes in knowledge-based VMAT planning for prostate cancer.
    Wall PDH; Carver RL; Fontenot JD
    Phys Med Biol; 2018 Jan; 63(1):015035. PubMed ID: 29131812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.
    Bohara G; Sadeghnejad Barkousaraie A; Jiang S; Nguyen D
    Med Phys; 2020 Sep; 47(9):3898-3912. PubMed ID: 32621789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment.
    Quan EM; Li X; Li Y; Wang X; Kudchadker RJ; Johnson JL; Kuban DA; Lee AK; Zhang X
    Int J Radiat Oncol Biol Phys; 2012 Jul; 83(4):1169-78. PubMed ID: 22704703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-based quality control of clinical intensity-modulated radiotherapy planning.
    Moore KL; Brame RS; Low DA; Mutic S
    Int J Radiat Oncol Biol Phys; 2011 Oct; 81(2):545-51. PubMed ID: 21277097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical implementation of a knowledge based planning tool for prostate VMAT.
    Powis R; Bird A; Brennan M; Hinks S; Newman H; Reed K; Sage J; Webster G
    Radiat Oncol; 2017 May; 12(1):81. PubMed ID: 28482845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of biological-based and dose volume-based intensity-modulated radiotherapy plans generated using the same treatment planning system.
    Senthilkumar K; Maria Das KJ
    J Cancer Res Ther; 2019 Mar; 15(Supplement):S33-S38. PubMed ID: 30900617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning.
    Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C
    Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge-based planning for the radiation therapy treatment plan quality assurance for patients with head and neck cancer.
    Cao W; Gronberg M; Olanrewaju A; Whitaker T; Hoffman K; Cardenas C; Garden A; Skinner H; Beadle B; Court L
    J Appl Clin Med Phys; 2022 Jun; 23(6):e13614. PubMed ID: 35488508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.