These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27203821)

  • 41. Total exfoliation of graphite in molten salts.
    Lavi A; Pyrikov M; Ohayon-Lavi A; Tadmor R; Shachar-Michaely G; Leibovitch Y; Ruse E; Vradman L; Regev O
    Phys Chem Chem Phys; 2023 Jan; 25(3):2618-2628. PubMed ID: 36602270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of Thermophysical Properties of High-Alloy Tool Steels on Their Performance in Re-Purposing Applications.
    Berger A; Benito S; Kronenberg P; Weber S
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models.
    Phinney DM; Frelka JC; Heldman DR
    J Food Sci; 2017 Jan; 82(1):6-15. PubMed ID: 27886381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermophysical properties of enzyme clarified Lime (Citrus aurantifolia L) juice at different moisture contents.
    Manjunatha SS; Raju PS; Bawa AS
    J Food Sci Technol; 2014 Nov; 51(11):3038-49. PubMed ID: 26396296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.
    Gheribi AE; Chartrand P
    J Chem Phys; 2016 Feb; 144(8):084506. PubMed ID: 26931711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new thermal conductivity probe for high temperature tests for the characterization of molten salts.
    Bovesecchi G; Coppa P; Pistacchio S
    Rev Sci Instrum; 2018 May; 89(5):055107. PubMed ID: 29864801
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New portable instrument for the measurement of thermal conductivity in gas process conditions.
    Queirós CS; Lourenço MJ; Vieira SI; Serra JM; Nieto de Castro CA
    Rev Sci Instrum; 2016 Jun; 87(6):065105. PubMed ID: 27370495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.
    Guntur SR; Lee KI; Paeng DG; Coleman AJ; Choi MJ
    Ultrasound Med Biol; 2013 Oct; 39(10):1771-84. PubMed ID: 23932271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermophysical Properties of Temperature-Sensitive Paint.
    Panas AJ; Szczepaniak R; Stryczniewicz W; Omen Ł
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of thermal properties of composting bulking materials.
    Ahn HK; Sauer TJ; Richard TL; Glanville TD
    Bioresour Technol; 2009 Sep; 100(17):3974-81. PubMed ID: 19362828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of copper ions on transformation of organic sulfur in cationic exchange resins in Li
    Zhang Z; Xue Y; Wang YL; Xu WD; Yan YD; Zheng YH; Ma FQ; Li GQ
    Chemosphere; 2023 Aug; 331():138837. PubMed ID: 37146777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials.
    Rodriguez A; Lam S; Hu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molten salt eutectics from atomistic simulations.
    Jayaraman S; Thompson AP; von Lilienfeld OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):030201. PubMed ID: 22060319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A proton conductor electrolyte based on molten CsH
    Chen X; Zhang Y; Ribeiorinha P; Li H; Kong X; Boaventura M
    RSC Adv; 2018 Jan; 8(10):5225-5232. PubMed ID: 35542448
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates.
    Yu R; Xiang J; Du K; Deng B; Chen D; Yin H; Liu Z; Wang D
    Nano Lett; 2022 Jan; 22(1):97-104. PubMed ID: 34958590
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides.
    Wang J; Sun Z; Lu G; Yu J
    J Phys Chem B; 2014 Aug; 118(34):10196-206. PubMed ID: 25105467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TES Nanoemulsions: A Review of Thermophysical Properties and Their Impact on System Design.
    Iacob-Tudose ET; Mamaliga I; Iosub AV
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Capture and electrochemical conversion of CO
    Bromberg L; Nitzsche MP; Hatton TA
    Nanoscale; 2022 Sep; 14(36):13141-13154. PubMed ID: 36069421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.