These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 2720390)
1. Noradrenergic innervation of human pineal gland: abnormalities in aging and Alzheimer's disease. Jengeleski CA; Powers RE; O'Connor DT; Price DL Brain Res; 1989 Mar; 481(2):378-82. PubMed ID: 2720390 [TBL] [Abstract][Full Text] [Related]
2. Innervation of human hippocampus by noradrenergic systems: normal anatomy and structural abnormalities in aging and in Alzheimer's disease. Powers RE; Struble RG; Casanova MF; O'Connor DT; Kitt CA; Price DL Neuroscience; 1988 May; 25(2):401-17. PubMed ID: 3399052 [TBL] [Abstract][Full Text] [Related]
3. Specific distribution pattern of nerve fibers containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY (CPON) in the pineal gland of the chinchilla (Chinchilla laniger)--an immunohistochemical study. Nowicki M; Wojtkiewicz J; Seremak B; Sulik M; Ostaszewski J; Lewczuk B; Majewski M; Przybylska-Gornowicz B Folia Histochem Cytobiol; 2003; 41(4):193-200. PubMed ID: 14677758 [TBL] [Abstract][Full Text] [Related]
4. The human pineal gland in aging and Alzheimer's disease: patterns of cytoskeletal antigen immunoreactivity. Pardo CA; Martin LJ; Troncoso JC; Price DL Acta Neuropathol; 1990; 80(5):535-40. PubMed ID: 2251911 [TBL] [Abstract][Full Text] [Related]
5. Dopamine transporter immunoreactive terminals in the bovine pineal gland. Phansuwan-Pujito P; Boontem P; Chetsawang B; Ebadi M; Govitrapong P Neurosci Lett; 2006 Jul; 403(1-2):78-83. PubMed ID: 16781060 [TBL] [Abstract][Full Text] [Related]
7. Ontogeny of tyrosine hydroxylase-positive but dopamine beta-hydroxylase-negative neuron-like cells in the pineal gland of golden hamsters. Jin KL; Shiotani Y; Kawai Y; Kiyama H Neurosci Lett; 1989 Feb; 97(1-2):41-5. PubMed ID: 2563907 [TBL] [Abstract][Full Text] [Related]
8. The foetal pig pineal gland is richly innervated by nerve fibres containing catecholamine-synthesizing enzymes, neuropeptide Y (NPY) and C-terminal flanking peptide of NPY, but it does not secrete melatonin. Bulc M; Lewczuk B; Prusik M; Całka J Histol Histopathol; 2013 May; 28(5):633-46. PubMed ID: 23408385 [TBL] [Abstract][Full Text] [Related]
9. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents. Peterson GM Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108 [TBL] [Abstract][Full Text] [Related]
10. Vasopressinergic innervation of the pig pineal gland. Przybylska-Gornowicz B; Lewczuk B; Møller M Folia Histochem Cytobiol; 2002; 40(1):3-8. PubMed ID: 11885805 [TBL] [Abstract][Full Text] [Related]
11. Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex. Noack HJ; Lewis DA Brain Res; 1989 Oct; 500(1-2):313-24. PubMed ID: 2575004 [TBL] [Abstract][Full Text] [Related]
12. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer's disease. Skene DJ; Vivien-Roels B; Sparks DL; Hunsaker JC; Pévet P; Ravid D; Swaab DF Brain Res; 1990 Sep; 528(1):170-4. PubMed ID: 2245336 [TBL] [Abstract][Full Text] [Related]
13. Postnatal changes in adrenergic and neuropeptide Y-containing nerve fibres in pineal gland of the pig. An immunohistochemical study. Przybylska-Gornowicz B; Kaleczyc J; Majewski M; Lewczuk B Folia Histochem Cytobiol; 1995; 33(4):239-45. PubMed ID: 8851052 [TBL] [Abstract][Full Text] [Related]
14. Peptidergic peripheral nervous systems in the mammalian pineal gland. Matsushima S; Sakai Y; Hira Y Microsc Res Tech; 1999 Aug 15-Sep 1; 46(4-5):265-80. PubMed ID: 10469463 [TBL] [Abstract][Full Text] [Related]
15. Aminergic innervation pattern of the rodent pineal gland: no apparent influence of time of day. Schröder H Acta Anat (Basel); 1987; 129(1):22-6. PubMed ID: 3618094 [TBL] [Abstract][Full Text] [Related]
16. Alterations in adrenergic receptors of frontal cortex and cerebral microvessels in Alzheimer's disease and aging. Kalaria RN; Andorn AC; Harik SI Prog Clin Biol Res; 1989; 317():367-74. PubMed ID: 2557637 [TBL] [Abstract][Full Text] [Related]
17. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Gaspar P; Berger B; Febvret A; Vigny A; Henry JP J Comp Neurol; 1989 Jan; 279(2):249-71. PubMed ID: 2563268 [TBL] [Abstract][Full Text] [Related]
18. Comparison of target innervation by sympathetic axons in adult wild type and heterozygous mice for nerve growth factor or its receptor trkA. Ghasemlou N; Krol KM; Macdonald DR; Kawaja MD J Pineal Res; 2004 Nov; 37(4):230-40. PubMed ID: 15485548 [TBL] [Abstract][Full Text] [Related]
19. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Ádori C; Glück L; Barde S; Yoshitake T; Kovacs GG; Mulder J; Maglóczky Z; Havas L; Bölcskei K; Mitsios N; Uhlén M; Szolcsányi J; Kehr J; Rönnbäck A; Schwartz T; Rehfeld JF; Harkany T; Palkovits M; Schulz S; Hökfelt T Acta Neuropathol; 2015 Apr; 129(4):541-63. PubMed ID: 25676386 [TBL] [Abstract][Full Text] [Related]
20. An immunohistochemical study on the postnatal changes in the C-terminal flanking peptide of neuropeptide Y (CPON)--positive nerve fibers in pineal gland of the pig. Przybylska-Gornowicz B; Lewczuk B; Moller M Rocz Akad Med Bialymst; 1997; 42 Suppl 2():175-84. PubMed ID: 9646699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]