These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2720401)

  • 1. Involvement of fast synaptic inhibition in the generation of high-frequency oscillation in central respiratory system.
    Schmid K; Böhmer G
    Brain Res; 1989 Apr; 485(1):193-8. PubMed ID: 2720401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAAergic and glycinergic inhibition in the phrenic nucleus organizes and couples fast oscillations in motor output.
    Marchenko V; Rogers RF
    J Neurophysiol; 2009 Apr; 101(4):2134-45. PubMed ID: 19225173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAA receptor mediated fast synaptic inhibition in the rabbit brain-stem respiratory system.
    Schmid K; Böhmer G; Gebauer K
    Acta Physiol Scand; 1991 Jul; 142(3):411-20. PubMed ID: 1656705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory responses induced by blockades of GABA and glycine receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit.
    Bongianni F; Mutolo D; Cinelli E; Pantaleo T
    Brain Res; 2010 Jul; 1344():134-47. PubMed ID: 20483350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo.
    Pierrefiche O; Schwarzacher SW; Bischoff AM; Richter DW
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):245-54. PubMed ID: 9547397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medullary inspiratory neurons with stable respiratory rhythm and little correlation to phrenic high-frequency oscillation.
    Hukuhara T; Takano K; Kato F; Kimura N
    Tohoku J Exp Med; 1988 Dec; 156 Suppl():11-9. PubMed ID: 3269043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine receptor-mediated fast synaptic inhibition in the brainstem respiratory system.
    Schmid K; Böhmer G; Gebauer K
    Respir Physiol; 1991 Jun; 84(3):351-61. PubMed ID: 1656503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medullary lateral tegmental field neurons influence the timing and pattern of phrenic nerve activity in cats.
    Orer HS; Gebber GL; Barman SM
    J Appl Physiol (1985); 2006 Aug; 101(2):521-30. PubMed ID: 16645195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat.
    Dutschmann M; Paton JF
    J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbations of Respiratory Rhythm and Pattern by Disrupting Synaptic Inhibition within Pre-Bötzinger and Bötzinger Complexes.
    Marchenko V; Koizumi H; Mosher B; Koshiya N; Tariq MF; Bezdudnaya TG; Zhang R; Molkov YI; Rybak IA; Smith JC
    eNeuro; 2016; 3(2):. PubMed ID: 27200412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal inhibition of phrenic motoneurones by stimulation of afferents from leg muscle in the cat: blockade by strychnine.
    Eldridge FL; Millhorn DE; Waldrop T
    J Physiol; 1987 Aug; 389():137-46. PubMed ID: 3681723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinjections of glycine into the pre-Bötzinger complex inhibit phrenic nerve activity in the rat.
    Chitravanshi VC; Sapru HN
    Brain Res; 2002 Aug; 947(1):25-33. PubMed ID: 12144849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of inhibitory amino acids in control of respiratory motor output in an arterially perfused rat.
    Hayashi F; Lipski J
    Respir Physiol; 1992 Jul; 89(1):47-63. PubMed ID: 1325666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS
    J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of inhibition in respiratory pattern generation.
    Janczewski WA; Tashima A; Hsu P; Cui Y; Feldman JL
    J Neurosci; 2013 Mar; 33(13):5454-65. PubMed ID: 23536061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent fast and slow synchronized efferent phrenic activities in time and frequency domain.
    Schmid K; Böhmer G; Weichel T
    Brain Res; 1990 Sep; 528(1):1-11. PubMed ID: 2123123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a cholinergic modulatory and rhythmogenic mechanism within the lamprey respiratory network.
    Mutolo D; Cinelli E; Bongianni F; Pantaleo T
    J Neurosci; 2011 Sep; 31(37):13323-32. PubMed ID: 21917815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythm generation by the pre-Bötzinger complex in medullary slice and island preparations: effects of adenosine A(1) receptor activation.
    Vandam RJ; Shields EJ; Kelty JD
    BMC Neurosci; 2008 Oct; 9():95. PubMed ID: 18826652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.