These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 27206493)
1. Facile Approach To Construct Ternary Cocktail Nanoparticles for Cancer Combination Therapy. Huang P; Ao J; Zhou L; Su Y; Huang W; Zhu X; Yan D Bioconjug Chem; 2016 Jul; 27(7):1564-8. PubMed ID: 27206493 [TBL] [Abstract][Full Text] [Related]
2. Self-Assembled Nanoparticles of Amphiphilic Twin Drug from Floxuridine and Bendamustine for Cancer Therapy. Zhang T; Huang P; Shi L; Su Y; Zhou L; Zhu X; Yan D Mol Pharm; 2015 Jul; 12(7):2328-36. PubMed ID: 25996874 [TBL] [Abstract][Full Text] [Related]
3. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells. Huang WT; Larsson M; Lee YC; Liu DM; Chiou GY Eur J Pharm Biopharm; 2016 Dec; 109():165-173. PubMed ID: 27793756 [TBL] [Abstract][Full Text] [Related]
4. Synergistic Combination Chemotherapy of Camptothecin and Floxuridine through Self-Assembly of Amphiphilic Drug-Drug Conjugate. Hu M; Huang P; Wang Y; Su Y; Zhou L; Zhu X; Yan D Bioconjug Chem; 2015 Dec; 26(12):2497-506. PubMed ID: 26497258 [TBL] [Abstract][Full Text] [Related]
5. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. Liao L; Liu J; Dreaden EC; Morton SW; Shopsowitz KE; Hammond PT; Johnson JA J Am Chem Soc; 2014 Apr; 136(16):5896-9. PubMed ID: 24724706 [TBL] [Abstract][Full Text] [Related]
7. Polyphosphoester-based nanoparticles with viscous flow core enhanced therapeutic efficacy by improved intracellular drug release. Ma YC; Wang JX; Tao W; Qian HS; Yang XZ ACS Appl Mater Interfaces; 2014 Sep; 6(18):16174-81. PubMed ID: 25188541 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional silica nanoparticles for targeted delivery of hydrophobic imaging and therapeutic agents. Liu Y; Mi Y; Zhao J; Feng SS Int J Pharm; 2011 Dec; 421(2):370-8. PubMed ID: 22001536 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis of polyester-PEG triblock copolymers and preparation of amphiphilic nanoparticles as drug carriers. Vassiliou AA; Papadimitriou SA; Bikiaris DN; Mattheolabakis G; Avgoustakis K J Control Release; 2010 Dec; 148(3):388-95. PubMed ID: 20869413 [TBL] [Abstract][Full Text] [Related]
10. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
11. A Nanoparticle Cocktail: Temporal Release of Predefined Drug Combinations. Pathak RK; Dhar S J Am Chem Soc; 2015 Jul; 137(26):8324-7. PubMed ID: 26086212 [TBL] [Abstract][Full Text] [Related]
12. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. Hwang HY; Kim IS; Kwon IC; Kim YH J Control Release; 2008 May; 128(1):23-31. PubMed ID: 18374444 [TBL] [Abstract][Full Text] [Related]
13. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
14. Use of nanoparticles for glioblastoma treatment: a new approach. Játiva P; Ceña V Nanomedicine (Lond); 2017 Oct; 12(20):2533-2554. PubMed ID: 28952878 [TBL] [Abstract][Full Text] [Related]
15. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug. Lee BS; Park K; Park S; Kim GC; Kim HJ; Lee S; Kil H; Oh SJ; Chi D; Kim K; Choi K; Kwon IC; Kim SY J Control Release; 2010 Oct; 147(2):253-60. PubMed ID: 20624433 [TBL] [Abstract][Full Text] [Related]
16. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Pérez-Herrero E; Fernández-Medarde A Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885 [TBL] [Abstract][Full Text] [Related]
17. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy. Wu X; Zhou L; Su Y; Dong CM Biomacromolecules; 2016 Jul; 17(7):2489-501. PubMed ID: 27310705 [TBL] [Abstract][Full Text] [Related]
18. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles. Zhang T; Xiong H; Dahmani FZ; Sun L; Li Y; Yao L; Zhou J; Yao J Nanotechnology; 2015 Apr; 26(14):145101. PubMed ID: 25771790 [TBL] [Abstract][Full Text] [Related]
19. Triple Block Nanocarrier Platform for Synergistic Cancer Therapy of Antagonistic Drugs. Surnar B; Jayakannan M Biomacromolecules; 2016 Dec; 17(12):4075-4085. PubMed ID: 27936725 [TBL] [Abstract][Full Text] [Related]
20. An Acid-Triggered Degradable and Fluorescent Nanoscale Drug Delivery System with Enhanced Cytotoxicity to Cancer Cells. An J; Dai X; Wu Z; Zhao Y; Lu Z; Guo Q; Zhang X; Li C Biomacromolecules; 2015 Aug; 16(8):2444-54. PubMed ID: 26213802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]