BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27206675)

  • 1. Loss of T-cell quiescence by targeting Slfn2 prevents the development and progression of T-ALL.
    Goldshtein A; Zerbib SM; Omar I; Cohen-Daniel L; Popkin D; Berger M
    Oncotarget; 2016 Jul; 7(30):46835-46847. PubMed ID: 27206675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slfn2 mutation-induced loss of T-cell quiescence leads to elevated de novo sterol synthesis.
    Omar I; Rom O; Aviram M; Cohen-Daniel L; Gebre AK; Parks JS; Berger M
    Immunology; 2017 Nov; 152(3):484-493. PubMed ID: 28672048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schlafen2 mutation unravels a role for chronic ER stress in the loss of T cell quiescence.
    Omar I; Lapenna A; Cohen-Daniel L; Tirosh B; Berger M
    Oncotarget; 2016 Jun; 7(26):39396-39407. PubMed ID: 27276683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notch in T-ALL: new players in a complex disease.
    Koch U; Radtke F
    Trends Immunol; 2011 Sep; 32(9):434-42. PubMed ID: 21775206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schlafen2 is a regulator of quiescence in adult murine hematopoietic stem cells.
    Warsi S; Dahl M; Smith EMK; Rydstrom A; Mansell E; Sigurdsson V; Sjoberg J; Soneji S; Rorby E; Siva K; Grahn THM; Liu Y; Blank U; Karlsson G; Karlsson S
    Haematologica; 2022 Dec; 107(12):2884-2896. PubMed ID: 35615926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells.
    Gerby B; Tremblay CS; Tremblay M; Rojas-Sutterlin S; Herblot S; Hébert J; Sauvageau G; Lemieux S; Lécuyer E; Veiga DF; Hoang T
    PLoS Genet; 2014 Dec; 10(12):e1004768. PubMed ID: 25522233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rictor/mammalian target of rapamycin 2 regulates the development of Notch1 induced murine T-cell acute lymphoblastic leukemia via forkhead box O3.
    Hua C; Guo H; Bu J; Zhou M; Cheng H; He F; Wang J; Wang X; Zhang Y; Wang Q; Zhou J; Cheng T; Xu M; Yuan W
    Exp Hematol; 2014 Dec; 42(12):1031-40.e1-4. PubMed ID: 25201756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence.
    Berger M; Krebs P; Crozat K; Li X; Croker BA; Siggs OM; Popkin D; Du X; Lawson BR; Theofilopoulos AN; Xia Y; Khovananth K; Moresco EM; Satoh T; Takeuchi O; Akira S; Beutler B
    Nat Immunol; 2010 Apr; 11(4):335-43. PubMed ID: 20190759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
    Durinck K; Wallaert A; Van de Walle I; Van Loocke W; Volders PJ; Vanhauwaert S; Geerdens E; Benoit Y; Van Roy N; Poppe B; Soulier J; Cools J; Mestdagh P; Vandesompele J; Rondou P; Van Vlierberghe P; Taghon T; Speleman F
    Haematologica; 2014 Dec; 99(12):1808-16. PubMed ID: 25344525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia.
    Ehrlich LA; Yang-Iott K; DeMicco A; Bassing CH
    Cell Cycle; 2015; 14(3):388-98. PubMed ID: 25659036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleostemin knocking-down causes cell cycle arrest and apoptosis in human T-cell acute lymphoblastic leukemia MOLT-4 cells via p53 and p21Waf1/Cip1 up-regulation.
    Rahmati M; Moosavi MA; Zarghami N
    Hematology; 2014 Dec; 19(8):455-62. PubMed ID: 24628257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes.
    Li W; Jiang Z; Li T; Wei X; Zheng Y; Wu D; Yang L; Chen S; Xu B; Zhong M; Jiang J; Hu Y; Su H; Zhang M; Huang X; Geng S; Weng J; Du X; Liu P; Li Y; Liu H; Yao Y; Li P
    Mol Cancer; 2015 Feb; 14():26. PubMed ID: 25644173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Methoxyestradiol blocks cell-cycle progression at the G2/M phase and induces apoptosis in human acute T lymphoblastic leukemia CEM cells.
    Zhang X; Huang H; Xu Z; Zhan R
    Acta Biochim Biophys Sin (Shanghai); 2010 Sep; 42(9):615-22. PubMed ID: 20732853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma.
    Marín-Rubio JL; de Arriba MC; Cobos-Fernández MA; González-Sánchez L; Ors I; Sastre I; Fernández-Piqueras J; Villa-Morales M
    Oncotarget; 2016 Sep; 7(38):61485-61499. PubMed ID: 27556297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic targeting of Notch signaling and immune checkpoint blockade in a spontaneous, genetically heterogeneous mouse model of T-cell acute lymphoblastic leukemia.
    Gao J; Van Meter M; Hernandez Lopez S; Chen G; Huang Y; Ren S; Zhao Q; Rojas J; Gurer C; Thurston G; Kuhnert F
    Dis Model Mech; 2019 Sep; 12(9):. PubMed ID: 31399482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Signaling Is Impaired in PTEN-Deficient T Cell Acute Lymphoblastic Leukemia.
    Pankaew S; Potier D; Grosjean C; Nozais M; Quessada J; Loosveld M; Remy É; Payet-Bornet D
    Front Immunol; 2022; 13():797244. PubMed ID: 35185889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of the anti-apoptotic protein AVEN contributes to increased malignancy in hematopoietic neoplasms.
    Eißmann M; Melzer IM; Fernández SB; Michel G; Hrabě de Angelis M; Hoefler G; Finkenwirth P; Jauch A; Schoell B; Grez M; Schmidt M; Bartholomae CC; Newrzela S; Haetscher N; Rieger MA; Zachskorn C; Mittelbronn M; Zörnig M
    Oncogene; 2013 May; 32(20):2586-91. PubMed ID: 22751129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1.
    Li X; Gounari F; Protopopov A; Khazaie K; von Boehmer H
    J Exp Med; 2008 Nov; 205(12):2851-61. PubMed ID: 18981238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nbn-Mre11 interaction is required for tumor suppression and genomic integrity.
    Kim JH; Penson AV; Taylor BS; Petrini JHJ
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15178-15183. PubMed ID: 31285322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia.
    Khandanpour C; Phelan JD; Vassen L; Schütte J; Chen R; Horman SR; Gaudreau MC; Krongold J; Zhu J; Paul WE; Dührsen U; Göttgens B; Grimes HL; Möröy T
    Cancer Cell; 2013 Feb; 23(2):200-14. PubMed ID: 23410974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.