These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27207278)

  • 1. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption.
    Faußer AC; Dušek J; Čížková H; Kazda M
    AoB Plants; 2016; 8():. PubMed ID: 27207278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis.
    Afreen F; Zobayed SM; Armstrong J; Armstrong W
    J Exp Bot; 2007; 58(7):1651-62. PubMed ID: 17351250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stems of Phragmites australis are buffering methane and carbon dioxide emissions.
    Dušek J; Faußer A; Stellner S; Kazda M
    Sci Total Environ; 2023 Jul; 882():163493. PubMed ID: 37068679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis.
    Armstrong J; Keep R; Armstrong W
    Ann Bot; 2009 Jan; 103(2):333-40. PubMed ID: 18996951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide emission from bamboo culms.
    Zachariah EJ; Sabulal B; Nair DN; Johnson AJ; Kumar CS
    Plant Biol (Stuttg); 2016 May; 18(3):400-5. PubMed ID: 26802362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland.
    Arkebauer TJ; Chanton JP; Verma SB; Kim J
    Am J Bot; 2001 Apr; 88(4):653-8. PubMed ID: 11302851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata.
    Pedersen O; Vos H; Colmer TD
    Plant Cell Environ; 2006 Jul; 29(7):1388-99. PubMed ID: 17080960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of alder (Alnus glutinosa).
    Armstrong W; Armstrong J
    Ann Bot; 2005 Sep; 96(4):591-612. PubMed ID: 16093272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2 and O2 dynamics in leaves of aquatic plants with C3 or CAM photosynthesis - application of a novel CO2 microsensor.
    Pedersen O; Colmer TD; Garcia-Robledo E; Revsbech NP
    Ann Bot; 2018 Sep; 122(4):605-615. PubMed ID: 29893789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O
    Koop-Jakobsen K; Mueller P; Meier RJ; Liebsch G; Jensen K
    Front Plant Sci; 2018; 9():541. PubMed ID: 29774037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ measurement of greenhouse gas emissions from a coastal estuarine wetland using a novel continuous monitoring technology: Comparison of indigenous and exotic plant species.
    Hsieh SH; Yuan CS; Ie IR; Yang L; Lin HJ; Hsueh ML
    J Environ Manage; 2021 Mar; 281():111905. PubMed ID: 33388713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reed (Phragmites australis) decline in a brackish wetland in Italy.
    Fogli S; Marchesini R; Gerdol R
    Mar Environ Res; 2002 Jun; 53(5):465-79. PubMed ID: 12054106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen transformations in constructed wetlands: A closer look at plant-soil interactions using chemical imaging.
    Nyer SC; Volkenborn N; Aller RC; Graffam M; Zhu Q; Price RE
    Sci Total Environ; 2022 Apr; 816():151560. PubMed ID: 34785218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud.
    Armstrong J; Armstrong W
    New Phytol; 1990 Jan; 114(1):121-128. PubMed ID: 33874300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.
    Lenzewski N; Mueller P; Meier RJ; Liebsch G; Jensen K; Koop-Jakobsen K
    New Phytol; 2018 Apr; 218(1):131-141. PubMed ID: 29314005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of missing efflux sites on convective ventilation and amino acid metabolism in Phragmites australis.
    Rolletschek H; Bumiller A; Henze R; Kohl JG
    New Phytol; 1998 Oct; 140(2):211-217. PubMed ID: 33862839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion.
    Sorrell BK; Brix H; Orr PT
    New Phytol; 1997 Jul; 136(3):433-442. PubMed ID: 33863012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence.
    Winkel A; Colmer TD; Pedersen O
    Plant Cell Environ; 2011 Dec; 34(12):2083-92. PubMed ID: 21819414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism.
    Lünsmann V; Kappelmeyer U; Taubert A; Nijenhuis I; von Bergen M; Heipieper HJ; Müller JA; Jehmlich N
    Appl Environ Microbiol; 2016 Jul; 82(14):4126-4132. PubMed ID: 27129963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seagrass-mediated rhizosphere redox gradients are linked with ammonium accumulation driven by diazotrophs.
    Brodersen KE; Mosshammer M; Bittner MJ; Hallstrøm S; Santner J; Riemann L; Kühl M
    Microbiol Spectr; 2024 Apr; 12(4):e0333523. PubMed ID: 38426746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.