These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2720793)

  • 1. Studies of the mechanisms of nuclear control over the synthesis of mitochondrial DNA in sea urchin eggs.
    Rinaldi AM; Salcher-Cillari I
    Cell Biol Int Rep; 1989 Feb; 13(2):181-7. PubMed ID: 2720793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and electron microscopic evidence that cell nucleus negatively controls mitochondrial genomic activity in early sea urchin development.
    Rinaldi AM; De Leo G; Arzone A; Salcher I; Storace A; Mutolo V
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1916-20. PubMed ID: 287031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nucleus negatively controls the synthesis of mitochondrial proteins in the sea urchin egg.
    Rinaldi AM; Carra E; Salcher-Cillari I; Oliva AO
    Cell Biol Int Rep; 1983 Mar; 7(3):211-8. PubMed ID: 6850853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes.
    Sluder G; Thompson EA; Rieder CL; Miller FJ
    J Cell Biol; 1995 Jun; 129(6):1447-58. PubMed ID: 7790347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell nucleus negatively controls mitochondrial RNA synthesis in early sea urchin development.
    Rinaldi AM; Storace A; Arzone A; Mutolo V
    Cell Biol Int Rep; 1977 May; 1(3):249-54. PubMed ID: 564743
    [No Abstract]   [Full Text] [Related]  

  • 7. Configurations of microtubules in artificially activated eggs of the sea urchin Lytechinus variegatus.
    Bestor TH; Schatten G
    Exp Cell Res; 1982 Sep; 141(1):71-8. PubMed ID: 6126387
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial division in non nucleated sea urchin eggs.
    Rinaldi AM; Salcher-Cillari I; Mutolo V
    Cell Biol Int Rep; 1979 Mar; 3(2):179-82. PubMed ID: 572266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs.
    Sluder G; Lewis K
    J Exp Zool; 1987 Oct; 244(1):89-100. PubMed ID: 3694143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear migration and spindle formation in the fourth cleavage of sea urchin eggs under the influence of inhibitors.
    Czihak G; Kojima MK
    Cell Struct Funct; 1992 Apr; 17(2):145-50. PubMed ID: 1606622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1988; 11(4):248-59. PubMed ID: 3064924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-helicase activity from sea urchin mitochondria.
    Roberti M; Musicco C; Polosa PL; Gadaleta MN; Cantatore P
    Biochem Biophys Res Commun; 1996 Feb; 219(1):134-9. PubMed ID: 8619795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control mechanisms of the cell cycle: role of the spatial arrangement of spindle components in the timing of mitotic events.
    Sluder G; Begg DA
    J Cell Biol; 1983 Sep; 97(3):877-86. PubMed ID: 6885924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The onset of DNA synthesis and its relation to morphogenetic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata.
    Longo FJ; Plunkett W
    Dev Biol; 1973 Jan; 30(1):56-67. PubMed ID: 4735369
    [No Abstract]   [Full Text] [Related]  

  • 15. The role of spindle microtubules in the timing of the cell cycle in echinoderm eggs.
    Sluder G; Miller FJ; Spanjian K
    J Exp Zool; 1986 Jun; 238(3):325-36. PubMed ID: 3723088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of spindle microtubules in the control of cell cycle timing.
    Sluder G
    J Cell Biol; 1979 Mar; 80(3):674-91. PubMed ID: 572367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA synthesis in Xenopus laevis enucleated eggs.
    Rinaldi AM; Salcher-Cillari I; Valenti AM
    Cell Biol Int Rep; 1981 Oct; 5(10):987-90. PubMed ID: 7197198
    [No Abstract]   [Full Text] [Related]  

  • 19. Centriole behavior in chloramphenicol-treated eggs of the sand dollar, Dendraster excentricus.
    Deutch AH; Shumway LK
    Protoplasma; 1973; 76(3):387-402. PubMed ID: 4734927
    [No Abstract]   [Full Text] [Related]  

  • 20. Division and motility of mitochondria in sea urchin embryogenesis.
    Soukhomlinova MY; Fais D; Kireev II; Gianguzza F; Morici G; Giudice G; Poliakov VY
    J Submicrosc Cytol Pathol; 2001 Oct; 33(4):433-42. PubMed ID: 11989777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.