These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2720801)

  • 1. The isotopic effects of D2O in developing sea urchin eggs.
    Sumitro SB; Sato H
    Cell Struct Funct; 1989 Feb; 14(1):95-111. PubMed ID: 2720801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogastrulation induced by heavy water in sea urchin larvae.
    Hoshi M
    Cell Differ; 1979 Dec; 8(6):431-5. PubMed ID: 299708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of heavy water (D2O) on the length of the mitotic period in developing sea urchin eggs.
    Takahashi TC; Sato H
    Cell Struct Funct; 1983 Dec; 8(4):357-65. PubMed ID: 6201297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.
    Mitsunaga K; Fujino Y; Yasumasu I
    J Biochem; 1986 Dec; 100(6):1607-15. PubMed ID: 2952640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules.
    Mitsunaga K; Akasaka K; Shimada H; Fujino Y; Yasumasu I; Numanoi H
    Cell Differ; 1986 Jun; 18(4):257-62. PubMed ID: 3087630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some more speract derivatives associated with eggs of sea urchins, Pseudocentrotus depressus, Strongylocentrotus purpuratus, Hemicentrotus pulcherrimus and Anthocidaris crassispina.
    Suzuki N; Kajiura H; Nomura K; Garbers DL; Yoshino K; Kurita M; Tanaka H; Yamaguchi M
    Comp Biochem Physiol B; 1988; 89(4):687-93. PubMed ID: 3378407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of metamorphosis induced by L-glutamine in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Yazaki I
    Zoolog Sci; 1995 Feb; 12(1):105-12. PubMed ID: 7795484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytochemical study of the sulfhydryl groups of sea urchin eggs during the first cleavage.
    KAWAMURA N; DAN K
    J Biophys Biochem Cytol; 1958 Sep; 4(5):615-9. PubMed ID: 13587558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromere Differentiation in the Sea Urchin Embryo: Expression of Primary Mesenchyme Cell Specific Antigen during Development: (sea urchin/micromere/primary mesenchyme cell/monoclonal antibody).
    Shimizu K; Noro N; Matsuda R
    Dev Growth Differ; 1988 Feb; 30(1):35-47. PubMed ID: 37282097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EXOGASTRULATION INDUCED BY CHILLING IN SEA URCHIN LARVAE.
    Takahashi T; Hoshi M; Asahina É
    Dev Growth Differ; 1977; 19(2):131-137. PubMed ID: 37282010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Sea Urchin Embryos in Artificial Sea Water Containing Br
    Fujino Y; Mitsunaga K; Yasumasu I
    Dev Growth Differ; 1987 Nov; 29(6):599-605. PubMed ID: 37281440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yields of tubulin paracrystals, vinblastine-crystals, induced in unfertilized and fertilized sea urchin eggs in the presence of D2O.
    Takahashi TC; Sato H
    Cell Struct Funct; 1984 Mar; 9(1):45-52. PubMed ID: 6722908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spicule Formation-Inducing Substance in Sea Urchin Embryo: (sea urchin embryo/spicule/micromere/blastocoelic fluid).
    Kiyomoto M; Tsukahara J
    Dev Growth Differ; 1991 Oct; 33(5):443-450. PubMed ID: 37282224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Sea Urchin Micromeres: Correlation between Specific Protein Synthesis and Spicule Formation: (micromere/differentiation/protein synthesis/sea urchin).
    Kitajima T
    Dev Growth Differ; 1986 May; 28(3):233-242. PubMed ID: 37281194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EFFECTS OF THE SURFACTANTS ON THE CLEAVAGE AND FURTHER DEVELOPMENT OF THE SEA URCHIN EMBRYOS 1. THE INHIBITION OF MICROMERE FORMATION AT THE FOURTH CLEAVAGE.
    Tanaka Y
    Dev Growth Differ; 1976; 18(2):113-122. PubMed ID: 37282012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells.
    Iwata M; Nakano E
    Cell Differ; 1985 Jul; 17(1):57-62. PubMed ID: 4028164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monohydroxylated polycyclic aromatic hydrocarbons influence spicule formation in the early development of sea urchins (Hemicentrotus pulcherrimus).
    Suzuki N; Ogiso S; Yachiguchi K; Kawabe K; Makino F; Toriba A; Kiyomoto M; Sekiguchi T; Tabuchi Y; Kondo T; Kitamura K; Hong CS; Srivastav AK; Oshima Y; Hattori A; Hayakawa K
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():55-60. PubMed ID: 25737366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.