These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 27208172)
21. Three-dimensional structures of mutant forms of E. coli inorganic pyrophosphatase with Asp-->Asn single substitution in positions 42, 65, 70, and 97. Avaeva SM; Rodina EV; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA; Oganessyan VY; Samygina VR; Harutyunyan EH Biochemistry (Mosc); 1998 Jun; 63(6):671-84. PubMed ID: 9668207 [TBL] [Abstract][Full Text] [Related]
22. Substitution of asparagine 76 by a tyrosine residue induces domain swapping in Helicobacter pylori phosphopantetheine adenylyltransferase. Cheng CS; Chen WT; Chen YW; Chen CH; Luo YC; Lyu PC; Yin HS J Biomol Struct Dyn; 2012; 30(4):488-502. PubMed ID: 22694317 [TBL] [Abstract][Full Text] [Related]
23. The CBS domain: a protein module with an emerging prominent role in regulation. Baykov AA; Tuominen HK; Lahti R ACS Chem Biol; 2011 Nov; 6(11):1156-63. PubMed ID: 21958115 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of Streptococcus mutans pyrophosphatase: a new fold for an old mechanism. Merckel MC; Fabrichniy IP; Salminen A; Kalkkinen N; Baykov AA; Lahti R; Goldman A Structure; 2001 Apr; 9(4):289-97. PubMed ID: 11525166 [TBL] [Abstract][Full Text] [Related]
25. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding. Jeong BC; Park SH; Yoo KS; Shin JS; Song HK J Struct Biol; 2013 Jul; 183(1):40-6. PubMed ID: 23664870 [TBL] [Abstract][Full Text] [Related]
27. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
28. Tetrameric Structures of Inorganic CBS-Pyrophosphatases from Various Bacterial Species Revealed by Small-Angle X-ray Scattering in Solution. Dadinova LA; Soshinskaia EY; Jeffries CM; Svergun DI; Shtykova EV Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32272694 [TBL] [Abstract][Full Text] [Related]
29. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Kellosalo J; Kajander T; Kogan K; Pokharel K; Goldman A Science; 2012 Jul; 337(6093):473-6. PubMed ID: 22837527 [TBL] [Abstract][Full Text] [Related]
30. Effectory site in Escherichia coli inorganic pyrophosphatase is revealed upon mutation at the intertrimeric interface. Sitnik TS; Vainonen JP; Rodina EV; Nazarova TI; Kurilova SA; Vorobyeva NN; Avaeva SM IUBMB Life; 2003 Jan; 55(1):37-41. PubMed ID: 12716061 [TBL] [Abstract][Full Text] [Related]
31. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
32. Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site. Salminen A; Parfenyev AN; Salli K; Efimova IS; Magretova NN; Goldman A; Baykov AA; Lahti R J Biol Chem; 2002 May; 277(18):15465-71. PubMed ID: 11854292 [TBL] [Abstract][Full Text] [Related]
33. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Nakabayashi M; Shibata N; Ishido-Nakai E; Kanagawa M; Iio Y; Komori H; Ueda Y; Nakagawa N; Kuramitsu S; Higuchi Y Extremophiles; 2016 May; 20(3):275-82. PubMed ID: 26936147 [TBL] [Abstract][Full Text] [Related]
34. Insights into the regulatory domain of cystathionine Beta-synthase: characterization of six variant proteins. Mendes MI; Santos AS; Smith DE; Lino PR; Colaço HG; de Almeida IT; Vicente JB; Salomons GS; Rivera I; Blom HJ; Leandro P Hum Mutat; 2014 Oct; 35(10):1195-202. PubMed ID: 25044645 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of the thermostability of thermophilic bacterium PS-3 PPase on substitution of Ser-89 with carboxylic amino acids. Wada M; Uchiumi T; Ichiba T; Hachimori A J Biochem; 2001 Jun; 129(6):955-61. PubMed ID: 11388912 [TBL] [Abstract][Full Text] [Related]
36. The "open" and "closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. Ahn S; Milner AJ; Fütterer K; Konopka M; Ilias M; Young TW; White SA J Mol Biol; 2001 Nov; 313(4):797-811. PubMed ID: 11697905 [TBL] [Abstract][Full Text] [Related]
37. A new method to investigate the catalytic mechanism of YhdE pyrophosphatase by using a pyrophosphate fluorescence probe. Shen Q; Tan H; Xing GW; Zheng J; Jia Z Sci Rep; 2017 Aug; 7(1):8169. PubMed ID: 28811554 [TBL] [Abstract][Full Text] [Related]
38. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Banerjee R; Zou CG Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573 [TBL] [Abstract][Full Text] [Related]
39. A Clinically Relevant Variant of the Human Hydrogen Sulfide-Synthesizing Enzyme Cystathionine Vicente JB; Colaço HG; Malagrinò F; Santo PE; Gutierres A; Bandeiras TM; Leandro P; Brito JA; Giuffrè A Oxid Med Cell Longev; 2017; 2017():8940321. PubMed ID: 28421128 [TBL] [Abstract][Full Text] [Related]