BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27208174)

  • 1. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.
    Srinivasan B; Marks H; Mitra S; Smalley DM; Skolnick J
    Biochem J; 2016 Jul; 473(14):2165-77. PubMed ID: 27208174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases.
    Luo J; van Loo B; Kamerlin SC
    Proteins; 2012 Apr; 80(4):1211-26. PubMed ID: 22275090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically active membrane-distal phosphatase domain of receptor protein-tyrosine phosphatase alpha is required for Src activation.
    Vacaru AM; den Hertog J
    FEBS J; 2010 Mar; 277(6):1562-70. PubMed ID: 20158519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.
    Pabis A; Kamerlin SC
    Curr Opin Struct Biol; 2016 Apr; 37():14-21. PubMed ID: 26716576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.
    Andrews LD; Zalatan JG; Herschlag D
    Biochemistry; 2014 Nov; 53(43):6811-9. PubMed ID: 25299936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme promiscuity: a mechanistic and evolutionary perspective.
    Khersonsky O; Tawfik DS
    Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic promiscuity in Pseudomonas aeruginosa arylsulfatase as an example of chemistry-driven protein evolution.
    Luo J; van Loo B; Kamerlin SC
    FEBS Lett; 2012 Jun; 586(11):1622-30. PubMed ID: 22673572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.
    Daumann LJ; McCarthy BY; Hadler KS; Murray TP; Gahan LR; Larrabee JA; Ollis DL; Schenk G
    Biochim Biophys Acta; 2013 Jan; 1834(1):425-32. PubMed ID: 22366468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary biochemist's perspective on promiscuity.
    Copley SD
    Trends Biochem Sci; 2015 Feb; 40(2):72-8. PubMed ID: 25573004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the multifunctional protein tyrosine phosphatase family.
    Pils B; Schultz J
    Mol Biol Evol; 2004 Apr; 21(4):625-31. PubMed ID: 14739250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of Acid phosphatases.
    Araujo CL; Vihko PT
    Methods Mol Biol; 2013; 1053():155-66. PubMed ID: 23860654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular signatures-based prediction of enzyme promiscuity.
    Carbonell P; Faulon JL
    Bioinformatics; 2010 Aug; 26(16):2012-9. PubMed ID: 20551137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme promiscuity: engine of evolutionary innovation.
    Pandya C; Farelli JD; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2014 Oct; 289(44):30229-30236. PubMed ID: 25210039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-specific autoantibody cleaves DNA by hydrolysis of phosphodiester and glycosidic bond.
    Nguyen HT; Jang YJ; Jeong S; Yu J
    Biochem Biophys Res Commun; 2003 Nov; 311(3):767-73. PubMed ID: 14623339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shining a light on enzyme promiscuity.
    Copley SD
    Curr Opin Struct Biol; 2017 Dec; 47():167-175. PubMed ID: 29169066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.