BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27208238)

  • 21. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana.
    Burdiak P; Rusaczonek A; Witoń D; Głów D; Karpiński S
    J Exp Bot; 2015 Jun; 66(11):3325-37. PubMed ID: 25969551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI):protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins.
    Hilley JD; Zawadzki JL; McConville MJ; Coombs GH; Mottram JC
    Mol Biol Cell; 2000 Apr; 11(4):1183-95. PubMed ID: 10749923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis.
    Saatian B; Austin RS; Tian G; Chen C; Nguyen V; Kohalmi SE; Geelen D; Cui Y
    BMC Plant Biol; 2018 Nov; 18(1):295. PubMed ID: 30466394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development.
    Gao H; Zhang Y; Wang W; Zhao K; Liu C; Bai L; Li R; Guo Y
    Plant Physiol; 2017 Jan; 173(1):219-239. PubMed ID: 27872247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maternal ENODLs Are Required for Pollen Tube Reception in Arabidopsis.
    Hou Y; Guo X; Cyprys P; Zhang Y; Bleckmann A; Cai L; Huang Q; Luo Y; Gu H; Dresselhaus T; Dong J; Qu LJ
    Curr Biol; 2016 Sep; 26(17):2343-50. PubMed ID: 27524487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth.
    Brocard-Gifford I; Lynch TJ; Garcia ME; Malhotra B; Finkelstein RR
    Plant Cell; 2004 Feb; 16(2):406-21. PubMed ID: 14742875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana.
    Zhao Z; Assmann SM
    J Exp Bot; 2011 Oct; 62(14):5179-89. PubMed ID: 21813794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning.
    Meng X; Chen X; Mang H; Liu C; Yu X; Gao X; Torii KU; He P; Shan L
    Curr Biol; 2015 Sep; 25(18):2361-72. PubMed ID: 26320950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Balcerowicz M; Ranjan A; Rupprecht L; Fiene G; Hoecker U
    Development; 2014 Aug; 141(16):3165-76. PubMed ID: 25063454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AtPGAP1 functions as a GPI inositol-deacylase required for efficient transport of GPI-anchored proteins.
    Bernat-Silvestre C; Sánchez-Simarro J; Ma Y; Montero-Pau J; Johnson K; Aniento F; Marcote MJ
    Plant Physiol; 2021 Dec; 187(4):2156-2173. PubMed ID: 34618080
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Shen Q; Bourdais G; Pan H; Robatzek S; Tang D
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5749-5754. PubMed ID: 28507137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional specification of stomatal production by the putative ligand CHALLAH.
    Abrash EB; Bergmann DC
    Development; 2010 Feb; 137(3):447-55. PubMed ID: 20056678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
    Torii KU
    Trends Plant Sci; 2012 Dec; 17(12):711-9. PubMed ID: 22819466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response.
    Yu Y; Assmann SM
    Plant Cell Environ; 2015 Oct; 38(10):2143-56. PubMed ID: 25808946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diverse roles of ERECTA family genes in plant development.
    Shpak ED
    J Integr Plant Biol; 2013 Dec; 55(12):1238-50. PubMed ID: 24016315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips.
    Geisler M; Yang M; Sack FD
    Planta; 1998 Aug; 205(4):522-30. PubMed ID: 9684356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in the molecular, biochemical and functional characterization of GPI8 and the GPI-anchoring mechanism [review].
    Zacks MA; Garg N
    Mol Membr Biol; 2006; 23(3):209-25. PubMed ID: 16785205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.
    Wang M; Yang K; Le J
    J Integr Plant Biol; 2015 Mar; 57(3):247-55. PubMed ID: 25234048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana.
    Edstam MM; Edqvist J
    Physiol Plant; 2014 Sep; 152(1):32-42. PubMed ID: 24460633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.
    Zhang K; Xia X; Zhang Y; Gan SS
    Plant J; 2012 Feb; 69(4):667-78. PubMed ID: 22007837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.