These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 27208401)

  • 1. Preface to the BBA special issue "heart lipid metabolism".
    Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1423-4. PubMed ID: 27208401
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibiting fatty acid oxidation promotes cardiomyocyte proliferation.
    Lim GB
    Nat Rev Cardiol; 2020 May; 17(5):266-267. PubMed ID: 32152529
    [No Abstract]   [Full Text] [Related]  

  • 3. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.
    Huss JM; Torra IP; Staels B; Giguère V; Kelly DP
    Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism.
    Gilde AJ; van der Lee KA; Willemsen PH; Chinetti G; van der Leij FR; van der Vusse GJ; Staels B; van Bilsen M
    Circ Res; 2003 Mar; 92(5):518-24. PubMed ID: 12600885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase of peroxisome proliferator-activated receptor δ (PPARδ) by digoxin to improve lipid metabolism in the heart of diabetic rats.
    Chen ZC; Yu BC; Chen LJ; Cheng JT
    Horm Metab Res; 2013 May; 45(5):364-71. PubMed ID: 23225238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects of short- and long-term leptin treatment on glucose and fatty acid uptake and metabolism in HL-1 cardiomyocytes.
    Palanivel R; Eguchi M; Shuralyova I; Coe I; Sweeney G
    Metabolism; 2006 Aug; 55(8):1067-75. PubMed ID: 16839843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy.
    Stowe KA; Burgess SC; Merritt M; Sherry AD; Malloy CR
    FEBS Lett; 2006 Jul; 580(17):4282-7. PubMed ID: 16831433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes.
    Haffar T; Bérubé-Simard F; Bousette N
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):73-8. PubMed ID: 26546819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1525-34. PubMed ID: 26996746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of beta oxidation of fatty acids].
    LYNEN F
    Bull Soc Chim Biol (Paris); 1953; 35(10):1061-83. PubMed ID: 13141075
    [No Abstract]   [Full Text] [Related]  

  • 11. [Cardiotonic action of cardiac glycosides and lipid metabolism (literature survey)].
    Chekman IS; Poliakova IF
    Vrach Delo; 1975 Nov; (11):5-10. PubMed ID: 1199054
    [No Abstract]   [Full Text] [Related]  

  • 12. Analyzing lipid metabolism: activation and beta-oxidation of fatty acids.
    Wheeler PR
    Methods Mol Biol; 2009; 465():47-59. PubMed ID: 20560058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha.
    Pellieux C; Montessuit C; Papageorgiou I; Lerch R
    Cardiovasc Res; 2009 May; 82(2):341-50. PubMed ID: 19131364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation.
    Lopaschuk GD; Jaswal JS
    J Cardiovasc Pharmacol; 2010 Aug; 56(2):130-40. PubMed ID: 20505524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation.
    Planavila A; Iglesias R; Giralt M; Villarroya F
    Cardiovasc Res; 2011 May; 90(2):276-84. PubMed ID: 21115502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart.
    Dobrzyn P; Sampath H; Dobrzyn A; Miyazaki M; Ntambi JM
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E357-64. PubMed ID: 18042664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cardiac steatosis and lipotoxicity in obesity cardiomyopathy.
    Zhang Y; Ren J
    Hypertension; 2011 Feb; 57(2):148-50. PubMed ID: 21220703
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the relationship between glucose oxidation and intermediary metabolism. I. The influence of glycolysis on the synthesis of cholesterol and fatty acid in normal liver.
    SIPERSTEIN MD; FAGAN VM
    J Clin Invest; 1958 Aug; 37(8):1185-95. PubMed ID: 13563648
    [No Abstract]   [Full Text] [Related]  

  • 19. Fatty acid metabolism and arrhythmias.
    London B
    J Cardiovasc Electrophysiol; 2004 Nov; 15(11):1317-8. PubMed ID: 15574184
    [No Abstract]   [Full Text] [Related]  

  • 20. [Very long chain fatty acid metabolism and diseases].
    Morita M; Imanaka T
    Seikagaku; 2008 May; 80(5):434-9. PubMed ID: 18575232
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.