These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27208643)

  • 1. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.
    Dhawi F; Datta R; Ramakrishna W
    Chemosphere; 2016 Aug; 157():33-41. PubMed ID: 27208643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil.
    Dhawi F; Datta R; Ramakrishna W
    Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):243-251. PubMed ID: 27913282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil.
    Dhawi F; Datta R; Ramakrishna W
    Plant Physiol Biochem; 2015 Dec; 97():390-9. PubMed ID: 26546782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils.
    Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L
    J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.
    Phieler R; Merten D; Roth M; Büchel G; Kothe E
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19408-16. PubMed ID: 25874434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd.
    de Fátima Pedroso D; Barbosa MV; Dos Santos JV; Pinto FA; Siqueira JO; Carneiro MAC
    Bull Environ Contam Toxicol; 2018 Sep; 101(3):386-391. PubMed ID: 30066147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake.
    Li K; Pidatala VR; Shaik R; Datta R; Ramakrishna W
    Environ Sci Technol; 2014 Jan; 48(2):1184-93. PubMed ID: 24383886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.
    Duponnois R; Kisa M; Assigbetse K; Prin Y; Thioulouse J; Issartel M; Moulin P; Lepage M
    Sci Total Environ; 2006 Nov; 370(2-3):391-400. PubMed ID: 16989893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium.
    Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W
    Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].
    Li X; Peng XW; Wu SL; Li ZR; Feng HM; Jiang ZP
    Huan Jing Ke Xue; 2014 Aug; 35(8):3142-8. PubMed ID: 25338391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.
    Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G
    Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem.
    Herrera H; Valadares R; Oliveira G; Fuentes A; Almonacid L; do Nascimento SV; Bashan Y; Arriagada C
    Mycorrhiza; 2018 Oct; 28(7):651-663. PubMed ID: 30094512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions.
    Yadav R; Ror P; Rathore P; Kumar S; Ramakrishna W
    J Appl Microbiol; 2021 Jul; 131(1):339-359. PubMed ID: 33269514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil.
    Chaturvedi R; Favas P; Pratas J; Varun M; Paul MS
    Ecotoxicol Environ Saf; 2018 Feb; 148():318-326. PubMed ID: 29091834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr
    Bruno LB; Karthik C; Ma Y; Kadirvelu K; Freitas H; Rajkumar M
    Chemosphere; 2020 Apr; 244():125521. PubMed ID: 31812764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi.
    Watts-Williams SJ; Emmett BD; Levesque-Tremblay V; MacLean AM; Sun X; Satterlee JW; Fei Z; Harrison MJ
    Plant Cell Environ; 2019 May; 42(5):1758-1774. PubMed ID: 30578745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization.
    Lin AJ; Zhang XH; Wong MH; Ye ZH; Lou LQ; Wang YS; Zhu YG
    Environ Geochem Health; 2007 Dec; 29(6):473-81. PubMed ID: 17874190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi.
    Moreira H; Pereira SI; Marques AP; Rangel AO; Castro PM
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6940-50. PubMed ID: 26676544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.
    Ali A; Guo D; Mahar A; Wang P; Ma F; Shen F; Li R; Zhang Z
    Ecotoxicol Environ Saf; 2017 May; 139():202-209. PubMed ID: 28135667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.