These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27208919)

  • 21. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds.
    Lewis DJ; Atwill ER; Lennox MS; Hou L; Karle B; Tate KW
    Environ Monit Assess; 2005 Aug; 107(1-3):407-25. PubMed ID: 16418926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds.
    Siewicki TC; Pullaro T; Pan W; McDaniel S; Glenn R; Stewart J
    J Environ Manage; 2007 Jan; 82(1):120-32. PubMed ID: 16556478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Source specific fecal bacteria modeling using soil and water assessment tool model.
    Parajuli PB; Mankin KR; Barnes PL
    Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).
    Harmon SM; West RT; Yates JR
    Environ Monit Assess; 2014 Dec; 186(12):8215-27. PubMed ID: 25139239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River Delta Region, China.
    Hong H; Qiu J; Liang Y
    J Environ Sci (China); 2010; 22(5):663-8. PubMed ID: 20608500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of indicator bacteria in Canyon Lake, California.
    Davis K; Anderson MA; Yates MV
    Water Res; 2005 Apr; 39(7):1277-88. PubMed ID: 15862327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways.
    Farnham DJ; Lall U
    Water Res; 2015 Jun; 76():143-59. PubMed ID: 25813489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonality of Coliform Bacteria Detection Rates in New Jersey Domestic Wells.
    Atherholt TB; Procopio NA; Goodrow SM
    Ground Water; 2017 May; 55(3):346-361. PubMed ID: 27775834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China.
    Bai J; Shen Z; Yan T; Qiu J; Li Y
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15462-15470. PubMed ID: 28512705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA.
    He LM; He ZL
    Water Res; 2008 May; 42(10-11):2563-73. PubMed ID: 18242661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges.
    Mitch AA; Gasner KC; Mitch WA
    Water Res; 2010 Sep; 44(16):4776-82. PubMed ID: 20580053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating fecal coliform bacteria loading from an urbanizing watershed.
    Im S; Brannan KM; Mostaghimi S; Cho J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(3):663-79. PubMed ID: 15055933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growing season surface water loading of fecal indicator organisms within a rural watershed.
    Sinclair A; Hebb D; Jamieson R; Gordon R; Benedict K; Fuller K; Stratton GW; Madani A
    Water Res; 2009 Mar; 43(5):1199-206. PubMed ID: 19117588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of climate change, tidal mixing, and watershed urbanization on historical water quality in Newport Bay, a saltwater wetland and tidal embayment in southern California.
    Pednekar AM; Grant SB; Jeong Y; Poon Y; Oancea C
    Environ Sci Technol; 2005 Dec; 39(23):9071-82. PubMed ID: 16382927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting fecal indicator organism contamination in Oregon coastal streams.
    Pettus P; Foster E; Pan Y
    Environ Pollut; 2015 Dec; 207():68-78. PubMed ID: 26349068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the fecal coliform total maximum daily load using Loading Simulation Program C++ and tidal prism model in estuarine shellfish growing areas: a case study in the Nassawadox coastal embayment, Virginia.
    Shen J; Sun S; Wang T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(9):1791-807. PubMed ID: 16134369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the transport and distribution of fecal coliform in a tidal estuary.
    Liu WC; Huang WC
    Sci Total Environ; 2012 Aug; 431():1-8. PubMed ID: 22652036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.