These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27208943)

  • 1. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.
    Malli GL
    J Chem Phys; 2016 May; 144(19):194301. PubMed ID: 27208943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6.
    Malli GL
    J Chem Phys; 2015 Feb; 142(6):064311. PubMed ID: 25681910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure and prediction of atomization energy of naked homoleptic uranium hexacarbonyl U(CO)6.
    Malli GL
    J Chem Phys; 2006 Jan; 124(2):021102. PubMed ID: 16422561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation energy of ekaplutonium fluoride E126F: the first diatomic with molecular spinors consisting of g atomic spinors.
    Malli GL
    J Chem Phys; 2006 Feb; 124(7):71102. PubMed ID: 16497023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects.
    Hangele T; Dolg M; Hanrath M; Cao X; Schwerdtfeger P
    J Chem Phys; 2012 Jun; 136(21):214105. PubMed ID: 22697528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalar Breit interaction for molecular calculations.
    Sun S; Ehrman J; Zhang T; Sun Q; Dyall KG; Li X
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37139994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relativistic energy-consistent pseudopotentials for superheavy elements 119 and 120 including quantum electrodynamic effects.
    Hangele T; Dolg M; Schwerdtfeger P
    J Chem Phys; 2013 May; 138(17):174113. PubMed ID: 23656120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate relativistic small-core pseudopotentials for actinides. energy adjustment for uranium and first applications to uranium hydride.
    Dolg M; Cao X
    J Phys Chem A; 2009 Nov; 113(45):12573-81. PubMed ID: 19552393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark theoretical study on the dissociation energy of chlorine.
    Csontos J; Kállay M
    J Phys Chem A; 2011 Jul; 115(26):7765-72. PubMed ID: 21604724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.