These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27208960)

  • 1. Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes.
    Tang B; Huang S; Fang Y; Hu J; Malonzo C; Truhlar DG; Stein A
    J Chem Phys; 2016 May; 144(19):194702. PubMed ID: 27208960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.
    Maiti S; Pramanik A; Manju U; Mahanty S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16357-63. PubMed ID: 26158782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.
    Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorine Doping Strengthens the Lithium-Storage Properties of the Mn-Based Metal-Organic Framework.
    He S; Zhou X; Li Z; Wang J; Ma L; Yang S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26907-26914. PubMed ID: 28745481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries.
    Wu JF; Guo X
    Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillared-Layer Metal-Organic Frameworks for Improved Lithium-Ion Storage Performance.
    Gong T; Lou X; Gao EQ; Hu B
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21839-21847. PubMed ID: 28613813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Low-Temperature Metal Node Distortion during Atomic Layer Deposition of Al
    Lemaire PC; Lee DT; Zhao J; Parsons GN
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22042-22054. PubMed ID: 28598598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Conductive Two-Dimensional Metal-Organic Frameworks for Resilient Lithium Storage with Superb Rate Capability.
    Wu Z; Adekoya D; Huang X; Kiefel MJ; Xie J; Xu W; Zhang Q; Zhu D; Zhang S
    ACS Nano; 2020 Sep; 14(9):12016-12026. PubMed ID: 32833424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Electrochemical Performance of SnO
    Li W; Li Z; Yang F; Fang X; Tang B
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35030-35039. PubMed ID: 28906104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metastable Marcasite-FeS
    Fan HH; Li HH; Huang KC; Fan CY; Zhang XY; Wu XL; Zhang JP
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10708-10716. PubMed ID: 28263060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations.
    Fang L; Cao X; Cao Z
    J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithiated Defect Sites in Zr Metal-Organic Framework for Enhanced Sulfur Utilization in Li-S Batteries.
    Baumann AE; Burns DA; Díaz JC; Thoi VS
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2159-2167. PubMed ID: 30576597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size dependent behavior of Fe
    Bock DC; Pelliccione CJ; Zhang W; Timoshenko J; Knehr KW; West AC; Wang F; Li Y; Frenkel AI; Takeuchi ES; Takeuchi KJ; Marschilok AC
    Phys Chem Chem Phys; 2017 Aug; 19(31):20867-20880. PubMed ID: 28745341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries.
    Jiang H; Liu XC; Wu Y; Shu Y; Gong X; Ke FS; Deng H
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3916-3921. PubMed ID: 29427470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium-selenium batteries.
    Ye W; Wang K; Yin W; Chai W; Rui Y; Tang B
    Dalton Trans; 2019 Jul; 48(27):10191-10198. PubMed ID: 31190031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Li Storage Stability Induced by Locating Sn in Metal-Organic Frameworks.
    Wu N; Wang W; Kou LQ; Zhang X; Shi YR; Li TH; Li F; Zhou JM; Wei Y
    Chemistry; 2018 Apr; 24(24):6330-6333. PubMed ID: 29465795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance.
    Liao Y; Li C; Lou X; Wang P; Yang Q; Shen M; Hu B
    J Colloid Interface Sci; 2017 Nov; 506():365-372. PubMed ID: 28750238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.
    Li ZF; Liu Q; Liu Y; Yang F; Xin L; Zhou Y; Zhang H; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27087-95. PubMed ID: 26422399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.