BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 27209171)

  • 1. Activation of Peroxymonosulfate by Subsurface Minerals.
    Yu M; Teel AL; Watts RJ
    J Contam Hydrol; 2016 Aug; 191():33-43. PubMed ID: 27209171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persulfate activation by subsurface minerals.
    Ahmad M; Teel AL; Watts RJ
    J Contam Hydrol; 2010 Jun; 115(1-4):34-45. PubMed ID: 20439128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.
    Watts RJ; Yu M; Teel AL
    J Contam Hydrol; 2017 Oct; 205():70-77. PubMed ID: 28918966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persulfate activation during exertion of total oxidant demand.
    Teel AL; Elloy FC; Watts RJ
    Chemosphere; 2016 Sep; 158():184-92. PubMed ID: 27269993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.
    Liu H; Bruton TA; Li W; Buren JV; Prasse C; Doyle FM; Sedlak DL
    Environ Sci Technol; 2016 Jan; 50(2):890-8. PubMed ID: 26687229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials.
    Liu H; Bruton TA; Doyle FM; Sedlak DL
    Environ Sci Technol; 2014 Sep; 48(17):10330-6. PubMed ID: 25133603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persulfate activation by naturally occurring trace minerals.
    Teel AL; Ahmad M; Watts RJ
    J Hazard Mater; 2011 Nov; 196():153-9. PubMed ID: 21968122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persulfate activation by glucose for in situ chemical oxidation.
    Watts RJ; Ahmad M; Hohner AK; Teel AL
    Water Res; 2018 Apr; 133():247-254. PubMed ID: 29407705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL; Doyle FM; Sedlak DL
    Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.
    McKenzie ER; Siegrist RL; McCray JE; Higgins CP
    Environ Sci Technol; 2015 Feb; 49(3):1681-9. PubMed ID: 25621878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.
    Anipsitakis GP; Dionysiou DD
    Environ Sci Technol; 2003 Oct; 37(20):4790-7. PubMed ID: 14594393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
    Pham AL; Doyle FM; Sedlak DL
    Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Theory to Practice: Leveraging Chemical Principles To Improve the Performance of Peroxydisulfate-Based In Situ Chemical Oxidation of Organic Contaminants.
    McGachy L; Sedlak DL
    Environ Sci Technol; 2024 Jan; 58(1):17-32. PubMed ID: 38110187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants.
    Wang L; Jiang J; Pang SY; Gao Y; Zhou Y; Li J; Yang Y; Ma J; Zhang T
    Chemosphere; 2019 Aug; 228():602-610. PubMed ID: 31059958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical generation by the interaction of transition metals with common oxidants.
    Anipsitakis GP; Dionysiou DD
    Environ Sci Technol; 2004 Jul; 38(13):3705-12. PubMed ID: 15296324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxide stabilizers remarkably increase the longevity of thermally activated peroxydisulfate for enhanced ISCO remediation.
    Hong J; Wang L; Lu X; Deng D
    Water Res; 2022 Oct; 224():119046. PubMed ID: 36096026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals.
    Guan YH; Ma J; Ren YM; Liu YL; Xiao JY; Lin LQ; Zhang C
    Water Res; 2013 Sep; 47(14):5431-8. PubMed ID: 23916710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil.
    Molamahmood HV; Qin J; Zhu Y; Deng M; Long M
    Chemosphere; 2020 Jun; 249():126146. PubMed ID: 32086061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co(x)Mn(3-x)O4) for Fenton-Like reaction in water.
    Yao Y; Cai Y; Wu G; Wei F; Li X; Chen H; Wang S
    J Hazard Mater; 2015 Oct; 296():128-137. PubMed ID: 25913679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of sorption on contaminant oxidation in activated persulfate systems.
    Teel AL; Cutler LM; Watts RJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Sep; 44(11):1098-103. PubMed ID: 19847699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.