These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27209276)

  • 21. The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better.
    Velásquez NA; Moreno-Gómez FN; Brunetti E; Penna M
    Sci Rep; 2018 May; 8(1):6990. PubMed ID: 29725055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental constraints and call evolution in torrent-dwelling frogs.
    Goutte S; Dubois A; Howard SD; Marquez R; Rowley JJ; Dehling JM; Grandcolas P; Rongchuan X; Legendre F
    Evolution; 2016 Apr; 70(4):811-26. PubMed ID: 26960074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.
    Both C; Grant T
    Biol Lett; 2012 Oct; 8(5):714-6. PubMed ID: 22675139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of phonotactic preferences of female frogs and its consequences for signal evolution.
    Velásquez NA; Valdés JL; Vásquez RA; Penna M
    Behav Processes; 2015 Sep; 118():76-84. PubMed ID: 26051194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversity of temporal response patterns in midbrain auditory neurons of frogs Batrachyla and its relevance for male vocal responses.
    Penna M; Araya C; Cañete M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):89-103. PubMed ID: 36136121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Divergence of acoustic signals in a widely distributed frog: relevance of inter-male interactions.
    Velásquez NA; Opazo D; Díaz J; Penna M
    PLoS One; 2014; 9(1):e87732. PubMed ID: 24489957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory neural networks involved in attention modulation prefer biologically significant sounds and exhibit sexual dimorphism in anurans.
    Xue F; Yue X; Fan Y; Cui J; Brauth SE; Tang Y; Fang G
    J Exp Biol; 2018 Mar; 221(Pt 5):. PubMed ID: 29361582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
    Goutte S; Dubois A; Howard SD; Márquez R; Rowley JJL; Dehling JM; Grandcolas P; Xiong RC; Legendre F
    J Evol Biol; 2018 Jan; 31(1):148-158. PubMed ID: 29150984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sound imaging of nocturnal animal calls in their natural habitat.
    Mizumoto T; Aihara I; Otsuka T; Takeda R; Aihara K; Okuno HG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Sep; 197(9):915-21. PubMed ID: 21584762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal communication in a noisy environment: a case study of the Bornean rock frog Staurois parvus.
    Grafe TU; Preininger D; Sztatecsny M; Kasah R; Dehling JM; Proksch S; Hödl W
    PLoS One; 2012; 7(5):e37965. PubMed ID: 22655089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Male antiphonal calls and phonotaxis evoked by female courtship calls in the large odorous frog (Odorrana graminea).
    Shen JX; Xu ZM; Narins PM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):69-77. PubMed ID: 35939131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in responses to conspecific and heterospecific advertisement vocalizations in sympatric grasshopper mice (Onychomys).
    Griffiths GC; Pasch B
    J Acoust Soc Am; 2024 Jul; 156(1):524-533. PubMed ID: 39024385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vocalizations of female frogs contain nonlinear characteristics and individual signatures.
    Zhang F; Zhao J; Feng AS
    PLoS One; 2017; 12(3):e0174815. PubMed ID: 28358859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing Phonotactic Behavior of Female Frogs in Darkness.
    Aihara I; Bishop PJ; Ohmer MEB; Awano H; Mizumoto T; Okuno HG; Narins PM; Hero JM
    Sci Rep; 2017 Sep; 7(1):10539. PubMed ID: 28874770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of traffic noise on the calling behavior of two Neotropical hylid frogs.
    Caorsi VZ; Both C; Cechin S; Antunes R; Borges-Martins M
    PLoS One; 2017; 12(8):e0183342. PubMed ID: 28854253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor.
    Christie KW; Schul J; Feng AS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):223-238. PubMed ID: 30927060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs.
    Escalona Sulbarán MD; Ivo Simões P; Gonzalez-Voyer A; Castroviejo-Fisher S
    J Evol Biol; 2019 Feb; 32(2):163-176. PubMed ID: 30481406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Bioacoustic of the advertisement call of Ceratophrys cranwelli (Anura: Ceratophryidae)].
    Valetti JA; Salas NE; Martino AL
    Rev Biol Trop; 2013 Mar; 61(1):273-80. PubMed ID: 23894980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound transmission and the recognition of temporally degraded sexual advertisement signals in Cope's gray treefrog (Hyla chrysoscelis).
    Kuczynski MC; Vélez A; Schwartz JJ; Bee MA
    J Exp Biol; 2010 Aug; 213(Pt 16):2840-50. PubMed ID: 20675554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floating frogs sound larger: environmental constraints on signal production drives call frequency changes.
    Goutte S; Muñoz MI; Ryan MJ; Halfwerk W
    Naturwissenschaften; 2020 Sep; 107(5):41. PubMed ID: 32970183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.