These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27209370)

  • 1. Multidimensional NMR inversion without Kronecker products: Multilinear inversion.
    Medellín D; Ravi VR; Torres-Verdín C
    J Magn Reson; 2016 Aug; 269():24-35. PubMed ID: 27209370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensor Least Angle Regression for Sparse Representations of Multidimensional Signals.
    Wickramasingha I; Elrewainy A; Sobhy M; Sherif SS
    Neural Comput; 2020 Sep; 32(9):1697-1732. PubMed ID: 32687768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing sparse representations of multidimensional signals using Kronecker bases.
    Caiafa CF; Cichocki A
    Neural Comput; 2013 Jan; 25(1):186-220. PubMed ID: 23020110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical learning of NMR tensors from 2D isotropic/anisotropic correlation nuclear magnetic resonance spectra.
    Srivastava DJ; Grandinetti PJ
    J Chem Phys; 2020 Oct; 153(13):134201. PubMed ID: 33032428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing numerical Laplace inversion methods for two and three-site molecular exchange between interconnected pore structures.
    Silletta EV; Franzoni MB; Monti GA; Acosta RH
    J Magn Reson; 2018 Jan; 286():82-90. PubMed ID: 29197695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T(1)--T(2) correlation spectra obtained using a fast two-dimensional Laplace inversion.
    Song YQ; Venkataramanan L; Hürlimann MD; Flaum M; Frulla P; Straley C
    J Magn Reson; 2002 Feb; 154(2):261-8. PubMed ID: 11846583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic light scattering inversion method based on regularization matrix reconstruction for flowing aerosol measurement.
    Hu J; Xing X; Shen J; Li X; Liu W; Wang Y
    Rev Sci Instrum; 2024 Apr; 95(4):. PubMed ID: 38557885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ideal regularization for learning kernels from labels.
    Pan B; Lai J; Shen L
    Neural Netw; 2014 Aug; 56():22-34. PubMed ID: 24824969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularized inversion of the Laplace transform for series of experiments.
    Radel B; Hardy EH; Djuric Z; Mahlbacher M; Haist M; Müller HS
    Magn Reson Chem; 2019 Aug; 57(10):836-844. PubMed ID: 30669175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simple Method for Solving the SVM Regularization Path for Semidefinite Kernels.
    Sentelle CG; Anagnostopoulos GC; Georgiopoulos M
    IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):709-22. PubMed ID: 26011894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance T
    Guo J; Xie R; Xiao L; Jin G; Gao L
    J Magn Reson; 2019 Nov; 308():106562. PubMed ID: 31337562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Multidimensional Inference for Structured Gaussian Processes.
    Gilboa E; Saatçi Y; Cunningham JP
    IEEE Trans Pattern Anal Mach Intell; 2015 Feb; 37(2):424-36. PubMed ID: 26353252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Reconstruction for Multidimensional Laplace NMR.
    Lin E; Telkki VV; Lin X; Huang C; Zhan H; Yang Y; Huang Y; Chen Z
    J Phys Chem Lett; 2021 Jun; 12(21):5085-5090. PubMed ID: 34028285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilinear Common Component Analysis via Kronecker Product Representation.
    Yoshikawa K; Kawano S
    Neural Comput; 2021 Sep; 33(10):2853-2880. PubMed ID: 34280292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Kronecker Product Kernel Methods via Generalized Vec Trick.
    Airola A; Pahikkala T
    IEEE Trans Neural Netw Learn Syst; 2018 Aug; 29(8):3374-3387. PubMed ID: 28783645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals.
    Koç A; Ozaktas HM; Hesselink L
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1288-302. PubMed ID: 20508697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Laplace NMR Reconstruction through Deep Learning Enhancement.
    Chen B; Fang Z; Zhang Y; Guan X; Lin E; Feng H; Zeng Y; Cai S; Yang Y; Huang Y; Chen Z
    J Am Chem Soc; 2024 Aug; 146(31):21591-21599. PubMed ID: 39046081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parsimony and goodness-of-fit in multi-dimensional NMR inversion.
    Babak P; Kryuchkov S; Kantzas A
    J Magn Reson; 2017 Jan; 274():46-56. PubMed ID: 27875798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kronecker compressive sensing.
    Duarte MF; Baraniuk RG
    IEEE Trans Image Process; 2012 Feb; 21(2):494-504. PubMed ID: 21859622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of large, irregularly sampled multidimensional images. A tensor-based approach.
    Morozov OV; Unser M; Hunziker P
    IEEE Trans Med Imaging; 2011 Feb; 30(2):366-74. PubMed ID: 20876011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.