These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27209454)

  • 1. Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.
    Wu B; Zhang X; Shang D; Bao D; Zhang S; Zheng T
    Bioresour Technol; 2016 Aug; 214():722-728. PubMed ID: 27209454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of biomethane use in Argentina.
    Morero B; Groppelli E; Campanella EA
    Bioresour Technol; 2015 Apr; 182():208-216. PubMed ID: 25700340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas upgrading and utilization: Current status and perspectives.
    Angelidaki I; Treu L; Tsapekos P; Luo G; Campanaro S; Wenzel H; Kougias PG
    Biotechnol Adv; 2018; 36(2):452-466. PubMed ID: 29360505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ Biogas Upgrading by CO
    Fu S; Angelidaki I; Zhang Y
    Trends Biotechnol; 2021 Apr; 39(4):336-347. PubMed ID: 32917407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomethane production system: Energetic analysis of various scenarios.
    Wu B; Zhang X; Bao D; Xu Y; Zhang S; Deng L
    Bioresour Technol; 2016 Apr; 206():155-163. PubMed ID: 26855289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts and profitability of biogas production from landscape management grass.
    Blokhina YN; Prochnow A; Plöchl M; Luckhaus C; Heiermann M
    Bioresour Technol; 2011 Jan; 102(2):2086-92. PubMed ID: 20801018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.
    O'Shea R; Wall D; Murphy JD
    Bioresour Technol; 2016 Sep; 216():238-49. PubMed ID: 27240240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste.
    Morero B; Vicentin R; Campanella EA
    Waste Manag; 2017 Mar; 61():195-205. PubMed ID: 27955887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.
    Hilaire F; Basset E; Bayard R; Gallardo M; Thiebaut D; Vial J
    J Chromatogr A; 2017 Nov; 1524():222-232. PubMed ID: 28992991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of biogas upgrading technologies and future perspectives: a review.
    Kapoor R; Ghosh P; Kumar M; Vijay VK
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11631-11661. PubMed ID: 30877529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
    Pucker J; Jungmeier G; Siegl S; Pötsch EM
    Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic study on simulation and modeling of a solar biogas reactor.
    Koyani K; Shah M; Parikh SP; Shah D
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44378-44399. PubMed ID: 36692710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Future transport policy designs for biomethane promotion: A system Dynamics model.
    Barisa A; Kirsanovs V; Safronova A
    J Environ Manage; 2020 Sep; 269():110842. PubMed ID: 32561023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads.
    Ardolino F; Arena U
    Waste Manag; 2019 Mar; 87():441-453. PubMed ID: 31109545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane losses from different biogas plant technologies.
    Wechselberger V; Reinelt T; Yngvesson J; Scharfy D; Scheutz C; Huber-Humer M; Hrad M
    Waste Manag; 2023 Feb; 157():110-120. PubMed ID: 36529031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.
    Rittmann SK
    Adv Biochem Eng Biotechnol; 2015; 151():117-35. PubMed ID: 26337846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.
    Xia A; Cheng J; Murphy JD
    Biotechnol Adv; 2016; 34(5):451-472. PubMed ID: 26724182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogas upgrading to biomethane as a local source of renewable energy to power light marine transport: Profitability analysis for the county of Cornwall.
    González-Arias J; Baena-Moreno FM; Pastor-Pérez L; Sebastia-Saez D; Gallego Fernández LM; Reina TR
    Waste Manag; 2022 Jan; 137():81-88. PubMed ID: 34749180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.