These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 27209739)
1. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts]. He QJ; Wang LQ Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):401-7. PubMed ID: 27209739 [TBL] [Abstract][Full Text] [Related]
2. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Casadio F; Leona M; Lombardi JR; Van Duyne R Acc Chem Res; 2010 Jun; 43(6):782-91. PubMed ID: 20420359 [TBL] [Abstract][Full Text] [Related]
3. Identification of natural dyes on laboratory-dyed wool and ancient wool, silk, and cotton fibers using attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy and Fourier transform Raman spectroscopy. Bruni S; De Luca E; Guglielmi V; Pozzi F Appl Spectrosc; 2011 Sep; 65(9):1017-23. PubMed ID: 21929856 [TBL] [Abstract][Full Text] [Related]
4. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Brosseau CL; Gambardella A; Casadio F; Grzywacz CM; Wouters J; Van Duyne RP Anal Chem; 2009 Apr; 81(8):3056-62. PubMed ID: 19317457 [TBL] [Abstract][Full Text] [Related]
5. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources. István K; Keresztury G; Szép A Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057 [TBL] [Abstract][Full Text] [Related]
6. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Li D; Qu L; Zhai W; Xue J; Fossey JS; Long Y Environ Sci Technol; 2011 May; 45(9):4046-52. PubMed ID: 21486008 [TBL] [Abstract][Full Text] [Related]
7. [Study on the ingredients of reserpine by TLC-FT-SERS]. Wang Y; Zi F; Wang Y; Zhao Y; Zhang X; Weng S Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Dec; 19(6):824-6. PubMed ID: 15822308 [TBL] [Abstract][Full Text] [Related]
8. [Application and progress of the nondestructive spectral technology used in polychrome ceramic relics analysis]. Wei L; Wang LQ; Zhou T; Rong B; Xia Y Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb; 32(2):481-5. PubMed ID: 22512194 [TBL] [Abstract][Full Text] [Related]
9. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy. Li H; Zhu Qx; Chwee Ts; Wu L; Chai Yf; Lu F; Yuan Yf Anal Chim Acta; 2015 Jul; 883():22-31. PubMed ID: 26088772 [TBL] [Abstract][Full Text] [Related]
10. [TLC-FT-SERS study on ingredients of Isrhynchophylline]. Wang Y; Wang SY; Zhao YX; Ren GF; Zi FL Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):43-5. PubMed ID: 12940023 [TBL] [Abstract][Full Text] [Related]
11. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Platania E; Lofrumento C; Lottini E; Azzaro E; Ricci M; Becucci M Anal Bioanal Chem; 2015 Aug; 407(21):6505-14. PubMed ID: 26082395 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis. Puchowicz D; Giesz P; Kozanecki M; Cieślak M Talanta; 2019 Apr; 195():516-524. PubMed ID: 30625577 [TBL] [Abstract][Full Text] [Related]
13. Identification of Natural Dyes in Ancient Textiles by Time-of-Flight Secondary Ion Mass Spectrometry and Surface-Enhanced Raman Spectroscopy. Lee J; Kim MJ; van Elslande E; Walter P; Lee Y J Nanosci Nanotechnol; 2015 Nov; 15(11):8701-5. PubMed ID: 26726579 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman spectroscopy and density functional theory study on 4,4'-bipyridine molecule. Zhuang Z; Cheng J; Wang X; Zhao B; Han X; Luo Y Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):509-16. PubMed ID: 16987698 [TBL] [Abstract][Full Text] [Related]
15. [TLC-FT-SERS study on a pair of optic isomers in ephedra]. Wang Y; Zhang JZ; Ma XY Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1373-5. PubMed ID: 15762480 [TBL] [Abstract][Full Text] [Related]
17. [Surface-enhanced Raman scattering (SERS) of amino acids on silver colloid]. Ke WZ; Wu JZ Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):551-3. PubMed ID: 15769043 [TBL] [Abstract][Full Text] [Related]
18. IR, Raman and SERS spectra of 2-phenoxymethylbenzothiazole. Panicker CY; Varghese HT; Raj A; Raju K; Ertan-Bolelli T; Yildiz I; Temiz-Arpaci O; Granadeiro CM; Nogueira HI Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):132-9. PubMed ID: 19524483 [TBL] [Abstract][Full Text] [Related]
19. Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. Greeneltch NG; Davis AS; Valley NA; Casadio F; Schatz GC; Van Duyne RP; Shah NC J Phys Chem A; 2012 Dec; 116(48):11863-9. PubMed ID: 23102210 [TBL] [Abstract][Full Text] [Related]
20. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks. Geiman I; Leona M; Lombardi JR J Forensic Sci; 2009 Jul; 54(4):947-52. PubMed ID: 19457151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]