These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27209747)
1. [Discrimination of Crude Oil Samples Using Laser-Induced Time-Resolved Fluorescence Spectroscopy]. Han XS; Liu DQ; Luan XN; Guo JJ; Liu YX; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):445-8. PubMed ID: 27209747 [TBL] [Abstract][Full Text] [Related]
2. [Characterization of Time-Resolved Laser-Induced Fluorescence from Crude Oil Samples]. Liu DQ; Luan XN; Han XS; Guo JJ; An JB; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1582-6. PubMed ID: 26601371 [TBL] [Abstract][Full Text] [Related]
3. [Fingerprint discrimination technique of spill oil based on concentration auxiliary parameter fluorescence spectra]. Wang CY; Li WD; Luan XN; Zhang DY; Zhang JL; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2700-5. PubMed ID: 21137403 [TBL] [Abstract][Full Text] [Related]
4. A New Approach of Oil Spill Detection Using Time-Resolved LIF Combined with Parallel Factors Analysis for Laser Remote Sensing. Liu D; Luan X; Guo J; Cui T; An J; Zheng R Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563899 [TBL] [Abstract][Full Text] [Related]
5. [An SVM real-time method by utilizing curvelet transform in nonlinear laser-induced fluorescence of oil recognition]. Li Y; Chen P; Lan GX; Yu CY Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1274-7. PubMed ID: 22827071 [TBL] [Abstract][Full Text] [Related]
6. [Study of Determination of Oil Mixture Components Content Based on Quasi-Monte Carlo Method]. Wang YT; Xu J; Liu XF; Chen MH; Wang ST Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1312-5. PubMed ID: 26415451 [TBL] [Abstract][Full Text] [Related]
7. [Identification of spilled oil by NIR spectroscopy technology based on sparse nonnegative matrix factorization and support vector machine]. Tan AL; Bi WH; Zhao Y Guang Pu Xue Yu Guang Pu Fen Xi; 2011 May; 31(5):1250-3. PubMed ID: 21800575 [TBL] [Abstract][Full Text] [Related]
8. [Application of synchronous fluorescence in identification of spilled oil at sea]. Jiang FH; Zhao ML; Han B; Zheng L; Wang XR; Lee FS Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):154-7. PubMed ID: 21428078 [TBL] [Abstract][Full Text] [Related]
9. [Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network]. Liu QQ; Wang CY; Shi XF; Li WD; Luan XN; Hou SL; Zhang JL; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Apr; 32(4):1012-5. PubMed ID: 22715774 [TBL] [Abstract][Full Text] [Related]
10. [Characterization and identification of spilled oils using synchronous fluorescence spectroscopy of concentrated solutions]. Zhu LL; Zhang QQ; An W; Wang CY Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):737-41. PubMed ID: 21595230 [TBL] [Abstract][Full Text] [Related]
11. Laser-based detection of PAHs and BTXE-aromatics in oil polluted soil samples. Bublitz J; Christophersen A; Schade W Anal Bioanal Chem; 1996 Jun; 355(5-6):684-6. PubMed ID: 15045341 [TBL] [Abstract][Full Text] [Related]
12. Oil source recognition technology using concentration-synchronous-matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network. Huang XD; Wang CY; Fan XM; Zhang JL; Yang C; Wang ZD Sci Total Environ; 2018 Mar; 616-617():632-638. PubMed ID: 29103640 [TBL] [Abstract][Full Text] [Related]
13. Experimental Analysis on the Optimal Excitation Wavelength for Fine-Grained Identification of Refined Oil Pollutants on Water Surface Based on Laser-Induced Fluorescence. Xie M; Jia Y; Li Y; Cai X; Cao K J Fluoresc; 2022 Jan; 32(1):257-265. PubMed ID: 34767127 [TBL] [Abstract][Full Text] [Related]
14. [Feature abstraction and spectral reconstruction of three-dimensional fluorescence spectra of oil in water]. Tian GJ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):895-9. PubMed ID: 18619324 [TBL] [Abstract][Full Text] [Related]
15. [Fluorescence analysis of crude oil samples with different spectral approaches]. Wang CY; Wang XS; Wang YH; Gao JW; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):728-32. PubMed ID: 16836150 [TBL] [Abstract][Full Text] [Related]
16. Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy. Fortes FJ; Ctvrtnícková T; Mateo MP; Cabalín LM; Nicolas G; Laserna JJ Anal Chim Acta; 2010 Dec; 683(1):52-7. PubMed ID: 21094380 [TBL] [Abstract][Full Text] [Related]
17. [Quantitative analysis model of multi-component complex oil spill source based on near infrared spectroscopy]. Tan AL; Bi WH Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3203-7. PubMed ID: 23427535 [TBL] [Abstract][Full Text] [Related]
18. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system. Gao F; Li J; Lin H; He S Opt Express; 2017 Oct; 25(21):25515-25522. PubMed ID: 29041218 [TBL] [Abstract][Full Text] [Related]
19. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Christensen JH; Hansen AB; Mortensen J; Andersen O Anal Chem; 2005 Apr; 77(7):2210-7. PubMed ID: 15801755 [TBL] [Abstract][Full Text] [Related]
20. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine]. Li W; Hu B; Wang MW Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3235-40. PubMed ID: 25881415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]