These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 27209779)
1. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes. Op De Beeck L; Janssens L; Stoks R Ecol Appl; 2016 Mar; 26(2):355-66. PubMed ID: 27209779 [TBL] [Abstract][Full Text] [Related]
2. Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. Delnat V; Janssens L; Stoks R Pest Manag Sci; 2020 Apr; 76(4):1448-1455. PubMed ID: 31639259 [TBL] [Abstract][Full Text] [Related]
3. Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control. Schorkopf DL; Spanoudis CG; Mboera LE; Mafra-Neto A; Ignell R; Dekker T PLoS Negl Trop Dis; 2016 Oct; 10(10):e0005043. PubMed ID: 27768698 [TBL] [Abstract][Full Text] [Related]
4. Effects of larval exposure to sublethal doses of Bacillus thuringiensis var. israelensis on body size, oviposition and survival of adult Anopheles coluzzii mosquitoes. Gowelo S; Chirombo J; Spitzen J; Koenraadt CJM; Mzilahowa T; van den Berg H; Takken W; McCann R Parasit Vectors; 2020 May; 13(1):259. PubMed ID: 32416733 [TBL] [Abstract][Full Text] [Related]
5. Sustainable control of mosquito larvae in the field by the combined actions of the biological insecticide Bti and natural competitors. Kroeger I; Liess M; Dziock F; Duquesne S J Vector Ecol; 2013 Jun; 38(1):82-9. PubMed ID: 23701611 [TBL] [Abstract][Full Text] [Related]
6. Community-based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation. Ingabire CM; Hakizimana E; Rulisa A; Kateera F; Van Den Borne B; Muvunyi CM; Mutesa L; Van Vugt M; Koenraadt CJM; Takken W; Alaii J Malar J; 2017 Oct; 16(1):399. PubMed ID: 28974204 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus. Pauly I; Jakoby O; Becker N Parasit Vectors; 2022 Oct; 15(1):351. PubMed ID: 36183110 [TBL] [Abstract][Full Text] [Related]
8. Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation. Delnat V; Tran TT; Janssens L; Stoks R Aquat Toxicol; 2019 Nov; 216():105310. PubMed ID: 31580997 [TBL] [Abstract][Full Text] [Related]
10. Evaluating Liquid and Granular Bacillus thuringiensis var. israelensis Broadcast Applications for Controlling Vectors of Dengue and Chikungunya Viruses in Artificial Containers and Tree Holes. Harwood JF; Farooq M; Turnwall BT; Richardson AG J Med Entomol; 2015 Jul; 52(4):663-71. PubMed ID: 26335473 [TBL] [Abstract][Full Text] [Related]
11. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735 [TBL] [Abstract][Full Text] [Related]
12. Bioinsecticide and leaf litter combination increases oviposition and reduces adult recruitment to create an effective ovitrap for Culex mosquitoes. Bellile KG; Vonesh JR J Vector Ecol; 2016 Jun; 41(1):123-7. PubMed ID: 27232134 [TBL] [Abstract][Full Text] [Related]
13. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Lacey LA J Am Mosq Control Assoc; 2007; 23(2 Suppl):133-63. PubMed ID: 17853604 [TBL] [Abstract][Full Text] [Related]
14. Current procedures of the integrated urban vector-mosquito control as an example in Cotonou (Benin, West Africa) and Wrocław area (Poland). Rydzanicz K; Lonc E; Becker N Wiad Parazytol; 2009; 55(4):335-40. PubMed ID: 20209805 [TBL] [Abstract][Full Text] [Related]
15. Use of Bacillus thuringiensis israelensis in integrated vector control of Aedes sp. in Sri Lanka: a prospective controlled effectiveness study. Tissera HA; Samaraweera PC; Jayamanne BDW; Janaki MDS; U Chulasiri MPP; Rodrigo C; Fernando SD Trop Med Int Health; 2018 Feb; 23(2):229-235. PubMed ID: 29164802 [TBL] [Abstract][Full Text] [Related]
16. Crustacean biodiversity as an important factor for mosquito larval control. Kroeger I; Duquesne S; Liess M J Vector Ecol; 2013 Dec; 38(2):390-400. PubMed ID: 24581370 [TBL] [Abstract][Full Text] [Related]
17. European common frog Rana temporaria (Anura: Ranidae) larvae show subcellular responses under field-relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels. Allgeier S; Frombold B; Mingo V; Brühl CA Environ Res; 2018 Apr; 162():271-279. PubMed ID: 29407758 [TBL] [Abstract][Full Text] [Related]
18. Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera: Culicidae). Zahiri NS; Mulla MS J Vector Ecol; 2005 Jun; 30(1):155-62. PubMed ID: 16007971 [TBL] [Abstract][Full Text] [Related]
19. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Paris M; Tetreau G; Laurent F; Lelu M; Despres L; David JP Pest Manag Sci; 2011 Jan; 67(1):122-8. PubMed ID: 21162152 [TBL] [Abstract][Full Text] [Related]
20. Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies. Allgeier S; Kästel A; Brühl CA Ecotoxicol Environ Saf; 2019 Mar; 169():786-796. PubMed ID: 30597777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]