BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27209792)

  • 1. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of freeze-thaw cycles on greenhouse gas emissions in marginally productive agricultural land under different perennial bioenergy crops.
    Osei AK; Rezanezhad F; Oelbermann M
    J Environ Manage; 2024 Apr; 357():120739. PubMed ID: 38552522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel framework to classify marginal land for sustainable biomass feedstock production.
    Gopalakrishnan G; Cristina Negri M; Snyder SW
    J Environ Qual; 2011; 40(5):1593-600. PubMed ID: 21869522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate mitigation and the future of tropical landscapes.
    Thomson AM; Calvin KV; Chini LP; Hurtt G; Edmonds JA; Bond-Lamberty B; Frolking S; Wise MA; Janetos AC
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19633-8. PubMed ID: 20921413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.
    Werling BP; Dickson TL; Isaacs R; Gaines H; Gratton C; Gross KL; Liere H; Malmstrom CM; Meehan TD; Ruan L; Robertson BA; Robertson GP; Schmidt TM; Schrotenboer AC; Teal TK; Wilson JK; Landis DA
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1652-7. PubMed ID: 24474791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bird communities in future bioenergy landscapes of the Upper Midwest.
    Meehan TD; Hurlbert AH; Gratton C
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18533-8. PubMed ID: 20921398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.
    Le PV; Kumar P; Drewry DT
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15085-90. PubMed ID: 21876137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities.
    Barney JN; DiTomaso JM
    PLoS One; 2011 Mar; 6(3):e17222. PubMed ID: 21408056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Net energy of cellulosic ethanol from switchgrass.
    Schmer MR; Vogel KP; Mitchell RB; Perrin RK
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergy crops Miscanthus x giganteus and Panicum virgatum reduce growth and survivorship of Spodoptera frugiperda (Lepidoptera: Noctuidae).
    Nabity PD; Zangerl AR; Berenbaum MR; DeLucia EH
    J Econ Entomol; 2011 Apr; 104(2):459-64. PubMed ID: 21510193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The global potential of bioenergy on abandoned agriculture lands.
    Campbell JE; Lobell DB; Genova RC; Field CB
    Environ Sci Technol; 2008 Aug; 42(15):5791-4. PubMed ID: 18754510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal assessment of farm-gate production costs and economic potential of
    Zhang B; Hastings A; Clifton-Brown JC; Jiang D; Faaij APC
    Glob Change Biol Bioenergy; 2020 May; 12(5):310-327. PubMed ID: 32421018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.
    West PC; Gibbs HK; Monfreda C; Wagner J; Barford CC; Carpenter SR; Foley JA
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19645-8. PubMed ID: 21041633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofuels and biodiversity.
    Wiens J; Fargione J; Hill J
    Ecol Appl; 2011 Jun; 21(4):1085-95. PubMed ID: 21774415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.