These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27210046)

  • 1. Natural gas anodes for aluminium electrolysis in molten fluorides.
    Haarberg GM; Khalaghi B; Mokkelbost T
    Faraday Discuss; 2016 Aug; 190():71-84. PubMed ID: 27210046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new anode material for oxygen evolution in molten oxide electrolysis.
    Allanore A; Yin L; Sadoway DR
    Nature; 2013 May; 497(7449):353-6. PubMed ID: 23657254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive review of aluminium electrolysis and the waste generated by it.
    Li X; Liu Y; Zhang TA
    Waste Manag Res; 2023 Oct; 41(10):1498-1511. PubMed ID: 37052310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anode electrolysis of sulfides.
    Qu J; Chen X; Xie H; Gao S; Wang D; Yin H
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2202884119. PubMed ID: 35878036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical aspects of fluoride air contaminant formation in aluminium smelter potrooms.
    L'vov BV; Polzik LK; Weinbruch S; Ellingsen DG; Thomassen Y
    J Environ Monit; 2005 May; 7(5):425-30. PubMed ID: 15877162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of aluminum electrodes in electrocoagulation process.
    Mouedhen G; Feki M; Wery Mde P; Ayedi HF
    J Hazard Mater; 2008 Jan; 150(1):124-35. PubMed ID: 17537574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.
    Zöllig H; Fritzsche C; Morgenroth E; Udert KM
    Water Res; 2015 Feb; 69():284-294. PubMed ID: 25497427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to chemical agents in aluminium potrooms.
    Doko Jelinić J; Nola IA; Udovicić R; Ostojić D; Zuskin E
    Med Lav; 2007; 98(5):407-14. PubMed ID: 17907533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.
    Lamb KJ; Dowsett MR; Chatzipanagis K; Scullion ZW; Kröger R; Lee JD; Aguiar PM; North M; Parkin A
    ChemSusChem; 2018 Jan; 11(1):137-148. PubMed ID: 29171724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement.
    Zhang J; Bai Y; Fan Y; Hou H
    J Biosci Bioeng; 2016 Oct; 122(4):488-93. PubMed ID: 27094956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-conversion of carbon dioxide (CO
    Zhang Z; Song Y; Zheng S; Zhen G; Lu X; Kobayashi T; Xu K; Bakonyi P
    Bioresour Technol; 2019 May; 279():339-349. PubMed ID: 30737066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes.
    Govindaraj M; Muthukumar M; Raju GB
    Environ Technol; 2010 Dec; 31(14):1613-22. PubMed ID: 21275257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation.
    Telgerafchi AE; Rutherford M; Espinosa G; McArthur D; Masse N; Perrin B; Tang Z; Powell AC
    Front Chem; 2023; 11():1192202. PubMed ID: 37465359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation of particle-electrodes for treating phenol wastewater using three-dimensional electrolysis].
    Zhang F; Li GM; Sheng Y; Hu HK; Ji J
    Huan Jing Ke Xue; 2007 Aug; 28(8):1715-9. PubMed ID: 17926399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.
    Snook GA; McGregor K; Urban AJ; Lanyon MR; Donelson R; Pownceby MI
    Faraday Discuss; 2016 Aug; 190():35-52. PubMed ID: 27265026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.
    Lu L; Zeng C; Wang L; Yin X; Jin S; Lu A; Jason Ren Z
    Sci Rep; 2015 Nov; 5():16242. PubMed ID: 26573014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organochlorine formation in magnesium electrowinning cells.
    Deutscher RL; Cathro KJ
    Chemosphere; 2001 Apr; 43(2):147-55. PubMed ID: 11297394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.