These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27210050)

  • 1. CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization.
    Zhu H; Misel L; Graham M; Robinson ML; Liang C
    Sci Rep; 2016 May; 6():25516. PubMed ID: 27210050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity.
    Zhu H; Liang C
    Bioinformatics; 2019 Aug; 35(16):2783-2789. PubMed ID: 30615056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website.
    Labun K; Krause M; Torres Cleuren Y; Valen E
    Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2016 May; 57(5):1058-68. PubMed ID: 26936792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
    Ferreira R; Gatto F; Nielsen J
    FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
    Wang Q; Ui-Tei K
    Methods Mol Biol; 2017; 1630():43-53. PubMed ID: 28643248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
    Oliveros JC; Franch M; Tabas-Madrid D; San-León D; Montoliu L; Cubas P; Pazos F
    Nucleic Acids Res; 2016 Jul; 44(W1):W267-71. PubMed ID: 27166368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Off-Spotter": very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs.
    Pliatsika V; Rigoutsos I
    Biol Direct; 2015 Jan; 10():4. PubMed ID: 25630343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs.
    Chen W; Zhang G; Li J; Zhang X; Huang S; Xiang S; Hu X; Liu C
    Nucleic Acids Res; 2019 Jan; 47(D1):D63-D68. PubMed ID: 30285246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving CRISPR-Cas9 On-Target Specificity.
    Jamal M; Ullah A; Ahsan M; Tyagi R; Habib Z; Rehman K
    Curr Issues Mol Biol; 2018; 26():65-80. PubMed ID: 28879857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering guide RNA to reduce the off-target effects of CRISPR.
    Wu J; Yin H
    J Genet Genomics; 2019 Nov; 46(11):523-529. PubMed ID: 31902584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-gRNA Design.
    Pallarès Masmitjà M; Knödlseder N; Güell M
    Methods Mol Biol; 2019; 1961():3-11. PubMed ID: 30912036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.
    Park J; Bae S
    Bioinformatics; 2018 Mar; 34(6):1077-1079. PubMed ID: 29186338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets.
    Bhagwat AM; Graumann J; Wiegandt R; Bentsen M; Welker J; Kuenne C; Preussner J; Braun T; Looso M
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32907859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering.
    Labun K; Montague TG; Gagnon JA; Thyme SB; Valen E
    Nucleic Acids Res; 2016 Jul; 44(W1):W272-6. PubMed ID: 27185894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.