These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27210053)

  • 1. A computational study of the interaction of graphene structures with biomolecular units.
    Carballeira DL; Ramos-Berdullas N; Pérez-Juste I; Fajín JL; Cordeiro MN; Mandado M
    Phys Chem Chem Phys; 2016 Jun; 18(22):15312-21. PubMed ID: 27210053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational studies on the interactions of glycine amino acid with graphene, h-BN and h-SiC monolayers.
    Larijani HT; Jahanshahi M; Ganji MD; Kiani MH
    Phys Chem Chem Phys; 2017 Jan; 19(3):1896-1908. PubMed ID: 28004048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. π(+)-π interactions between (hetero)aromatic amine cations and the graphitic surfaces of pyrogenic carbonaceous materials.
    Xiao F; Pignatello JJ
    Environ Sci Technol; 2015 Jan; 49(2):906-14. PubMed ID: 25569811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene adhesion on MoS₂ monolayer: an ab initio study.
    Ma Y; Dai Y; Guo M; Niu C; Huang B
    Nanoscale; 2011 Sep; 3(9):3883-7. PubMed ID: 21833391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.
    Fernández ACR; Castellani NJ
    Chemphyschem; 2017 Aug; 18(15):2065-2080. PubMed ID: 28494119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of the adsorption of aromatic units on carbon allotropes including explicit (empirical) DFT dispersion corrections and implicitly dispersion-corrected functionals: the pyridine case.
    Ramos-Berdullas N; Pérez-Juste I; Van Alsenoy C; Mandado M
    Phys Chem Chem Phys; 2015 Jan; 17(1):575-87. PubMed ID: 25407229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpectedly strong anion-π interactions on the graphene flakes.
    Shi G; Ding Y; Fang H
    J Comput Chem; 2012 May; 33(14):1328-37. PubMed ID: 22430486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide.
    Saikia N; Deka RC
    J Comput Aided Mol Des; 2013 Sep; 27(9):807-21. PubMed ID: 24132695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of small organic molecules on graphene.
    Lazar P; Karlický F; Jurečka P; Kocman M; Otyepková E; Šafářová K; Otyepka M
    J Am Chem Soc; 2013 Apr; 135(16):6372-7. PubMed ID: 23570612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation.
    Kamel M; Raissi H; Hashemzadeh H; Mohammadifard K
    Amino Acids; 2020 Oct; 52(10):1465-1478. PubMed ID: 33098474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Externally predictive quantum-mechanical models for the adsorption of aromatic organic compounds by graphene-oxide nanomaterials.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Dec; 30(12):847-863. PubMed ID: 31577156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-dimensional extended lines of divacancy defects in graphene.
    Botello-Méndez AR; Declerck X; Terrones M; Terrones H; Charlier JC
    Nanoscale; 2011 Jul; 3(7):2868-72. PubMed ID: 21321755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of basic residues in the adsorption of blood proteins onto the graphene surface.
    Gu Z; Yang Z; Wang L; Zhou H; Jimenez-Cruz CA; Zhou R
    Sci Rep; 2015 Jun; 5():10873. PubMed ID: 26034971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicene beyond mono-layers--different stacking configurations and their properties.
    Kamal C; Chakrabarti A; Banerjee A; Deb SK
    J Phys Condens Matter; 2013 Feb; 25(8):085508. PubMed ID: 23370369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure calculations in arbitrary electrostatic environments.
    Watson MA; Rappoport D; Lee EM; Olivares-Amaya R; Aspuru-Guzik A
    J Chem Phys; 2012 Jan; 136(2):024101. PubMed ID: 22260558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method.
    Shahabi M; Raissi H
    J Biomol Struct Dyn; 2018 Aug; 36(10):2517-2529. PubMed ID: 28758844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charging of unfunctionalized graphene in organic solvents.
    Liu WW; Wang JN; Wang XX
    Nanoscale; 2012 Jan; 4(2):425-8. PubMed ID: 22109652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ssDNA binding reveals the atomic structure of graphene.
    Husale BS; Sahoo S; Radenovic A; Traversi F; Annibale P; Kis A
    Langmuir; 2010 Dec; 26(23):18078-82. PubMed ID: 20977263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.