These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27210077)

  • 1. Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot.
    He T; D'Agui H; Lim SL; Enright NJ; Luo Y
    Sci Rep; 2016 May; 6():26315. PubMed ID: 27210077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental drivers and genomic architecture of trait differentiation in fire-adapted Banksia attenuata ecotypes.
    He T; Lamont BB; Enright NJ; D'Agui HM; Stock W
    J Integr Plant Biol; 2019 Apr; 61(4):417-432. PubMed ID: 29993190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of a hotspot genus: geographic variation in speciation and extinction rates in Banksia (Proteaceae).
    Cardillo M; Pratt R
    BMC Evol Biol; 2013 Aug; 13():155. PubMed ID: 23957450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia.
    Carpenter RJ; Macphail MK; Jordan GJ; Hill RS
    Am J Bot; 2015 Dec; 102(12):2092-107. PubMed ID: 26643888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early evidence of xeromorphy in angiosperms: stomatal encryption in a new eocene species of Banksia (Proteaceae) from Western Australia.
    Carpenter RJ; McLoughlin S; Hill RS; McNamara KJ; Jordan GJ
    Am J Bot; 2014 Sep; 101(9):1486-97. PubMed ID: 25253709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogenetic signal of species co-occurrence in high-diversity shrublands: different patterns for fire-killed and fire-resistant species.
    Cardillo M
    BMC Ecol; 2012 Sep; 12():21. PubMed ID: 23016574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus Leucadendron (Proteaceae).
    Tonnabel J; Schurr FM; Boucher F; Thuiller W; Renaud J; Douzery EJP; Ronce O
    Am Nat; 2018 Feb; 191(2):220-234. PubMed ID: 29351009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.
    Budde KB; González-Martínez SC; Navascués M; Burgarella C; Mosca E; Lorenzo Z; Zabal-Aguirre M; Vendramin GG; Verdú M; Pausas JG; Heuertz M
    Ann Bot; 2017 Apr; 119(6):1061-1072. PubMed ID: 28159988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental climate warming enforces seed dormancy in South African Proteaceae but seedling drought resilience exceeds summer drought periods.
    Arnolds JL; Musil CF; Rebelo AG; Krüger GH
    Oecologia; 2015 Apr; 177(4):1103-16. PubMed ID: 25502439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire-mediated disruptive selection can explain the reseeder-resprouter dichotomy in Mediterranean-type vegetation.
    Altwegg R; De Klerk HM; Midgley GF
    Oecologia; 2015 Feb; 177(2):367-77. PubMed ID: 25348575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.
    Jordan R; Hoffmann AA; Dillon SK; Prober SM
    Mol Ecol; 2017 Nov; 26(21):6002-6020. PubMed ID: 28862778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate drives vein anatomy in Proteaceae.
    Jordan GJ; Brodribb TJ; Blackman CJ; Weston PH
    Am J Bot; 2013 Aug; 100(8):1483-93. PubMed ID: 23935111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae.
    Carlson JE; Holsinger KE; Prunier R
    Evolution; 2011 Jan; 65(1):108-24. PubMed ID: 20840595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climatic controls on ecosystem resilience: Postfire regeneration in the Cape Floristic Region of South Africa.
    Wilson AM; Latimer AM; Silander JA
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9058-63. PubMed ID: 26150521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Banksia born to burn.
    He T; Lamont BB; Downes KS
    New Phytol; 2011 Jul; 191(1):184-196. PubMed ID: 21388378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental niche conservatism explains the accumulation of species richness in Mediterranean-hotspot plant genera.
    Skeels A; Cardillo M
    Evolution; 2017 Mar; 71(3):582-594. PubMed ID: 28094438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data.
    He T; Krauss SL; Lamont BB; Miller BP; Enright NJ
    Mol Ecol; 2004 May; 13(5):1099-109. PubMed ID: 15078448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and long-term fire management impacts on Australian savannas.
    Scheiter S; Higgins SI; Beringer J; Hutley LB
    New Phytol; 2015 Feb; 205(3):1211-1226. PubMed ID: 25388673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When can refuges mediate the genetic effects of fire regimes? A simulation study of the effects of topography and weather on neutral and adaptive genetic diversity in fire-prone landscapes.
    Banks SC; Davies ID; Cary GJ
    Mol Ecol; 2017 Oct; 26(19):4935-4954. PubMed ID: 28734110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of phenotypic integration, plasticity and genetic adaptation to adaptive capacity relating to drought in
    Oyanoghafo OO; Miller AD; Toomey M; Ahrens CW; Tissue DT; Rymer PD
    Front Plant Sci; 2023; 14():1150116. PubMed ID: 37152164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.