These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27210500)

  • 1. Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas.
    Bersi MR; Bellini C; Di Achille P; Humphrey JD; Genovese K; Avril S
    J Biomech Eng; 2016 Jul; 138(7):0710051-07100515. PubMed ID: 27210500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics.
    Bersi MR; Bellini C; Humphrey JD; Avril S
    Biomech Model Mechanobiol; 2019 Feb; 18(1):203-218. PubMed ID: 30251206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model.
    Badel P; Avril S; Lessner S; Sutton M
    Comput Methods Biomech Biomed Engin; 2012; 15(1):37-48. PubMed ID: 21749226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch.
    Genovese K; Humphrey JD
    J Biomed Opt; 2015 Apr; 20(4):046005. PubMed ID: 25867620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Approach to Assess the In Situ Versus Ex Vivo Mechanical Behaviors of the Coronary Artery.
    Wang R; Raykin J; Brewster LP; Gleason RL
    J Biomech Eng; 2017 Jan; 139(1):0110101-7. PubMed ID: 27893049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA; Shadwick RE; Gosline JM
    J Biomech; 2010 Aug; 43(11):2070-8. PubMed ID: 20430395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.
    Peña JA; Corral V; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2018 Jan; 77():434-445. PubMed ID: 29024895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets.
    Amini Khoiy K; Amini R
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27538260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and rupture properties of porcine aortic tissue measured using inflation testing.
    Marra SP; Kennedy FE; Kinkaid JN; Fillinger MF
    Cardiovasc Eng; 2006 Dec; 6(4):123-31. PubMed ID: 17136596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-field bulge test for planar anisotropic tissues: part I--experimental methods applied to human skin tissue.
    Tonge TK; Atlan LS; Voo LM; Nguyen TD
    Acta Biomater; 2013 Apr; 9(4):5913-25. PubMed ID: 23261928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic abdominal aortic aneurysm replicas with biaxial material characterization.
    Ruiz de Galarreta S; Antón R; Cazon A; Larraona GS; Finol EA
    Med Eng Phys; 2016 Dec; 38(12):1505-1512. PubMed ID: 27745874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of mechanical directional dependency of the ascending aorta with severe medial degeneration.
    Chung J; Lachapelle K; Cartier R; Mongrain R; Leask RL
    Cardiovasc Pathol; 2017; 26():45-50. PubMed ID: 27888778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental foundation for in vivo measurement of the elasticity of the aorta in computed tomography angiography.
    Schlicht MS; Khanafer K; Duprey A; Cronin P; Berguer R
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):447-52. PubMed ID: 23932205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hyperelastic constitutive law for aortic valve tissue.
    May-Newman K; Lam C; Yin FC
    J Biomech Eng; 2009 Aug; 131(8):081009. PubMed ID: 19604021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the aortic stress-strain relation in uniaxial tension.
    Sokolis DP; Boudoulas H; Karayannacos PE
    J Biomech; 2002 Sep; 35(9):1213-23. PubMed ID: 12163311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study.
    Cox MA; Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Characterization and Material Modeling of Diabetic Aortas in a Rabbit Model.
    Tong J; Yang F; Li X; Xu X; Wang GX
    Ann Biomed Eng; 2018 Mar; 46(3):429-442. PubMed ID: 29124551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of regional aortic stiffness using MR elastography: A phantom and ex-vivo porcine aorta study.
    Zhang N; Chen J; Yin M; Glaser KJ; Xu L; Ehman RL
    Magn Reson Imaging; 2016 Feb; 34(2):91-6. PubMed ID: 26597836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension.
    Giannakoulas G; Giannoglou G; Soulis J; Farmakis T; Papadopoulou S; Parcharidis G; Louridas G
    Med Hypotheses; 2005; 65(6):1191-5. PubMed ID: 16107302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models.
    Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR
    Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.