These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27210763)

  • 41. Genome-Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma.
    Hao S; Yao L; Huang J; He H; Yang F; Di Y; Jin C; Fu D
    Technol Cancer Res Treat; 2018 Jan; 17():1533034617748429. PubMed ID: 29343207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma.
    Fu XL; Liu DJ; Yan TT; Yang JY; Yang MW; Li J; Huo YM; Liu W; Zhang JF; Hong J; Hua R; Chen HY; Sun YW
    Sci Rep; 2016 Sep; 6():33535. PubMed ID: 27628540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.
    Azzouzi I; Moest H; Wollscheid B; Schmugge M; Eekels JJM; Speer O
    Exp Hematol; 2015 May; 43(5):382-392. PubMed ID: 25681748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High expression of ErbB3 binding protein 1 (EBP1) predicts poor prognosis of pancreatic ductal adenocarcinoma (PDAC).
    Gong C; Zhang Y; Chen Y; Zhang H; Liu X; Xue H; Ji L; Wang L; Yang L; Zhou G; Wan C
    Tumour Biol; 2015 Dec; 36(12):9189-99. PubMed ID: 26088450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of PACT in the RNA silencing pathway.
    Lee Y; Hur I; Park SY; Kim YK; Suh MR; Kim VN
    EMBO J; 2006 Feb; 25(3):522-32. PubMed ID: 16424907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of insulin-like growth factor 2 mRNA-binding protein 3 as a radioresistance factor in squamous esophageal cancer cells.
    Yoshino K; Motoyama S; Koyota S; Shibuya K; Sato Y; Sasaki T; Wakita A; Saito H; Minamiya Y; Sugiyama T; Ogawa J
    Dis Esophagus; 2014 Jul; 27(5):479-84. PubMed ID: 22989274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. IGF2BP3 and miR191-5p synergistically increase HCC cell invasiveness by altering ZO-1 expression.
    Gao Y; Luo T; Ouyang X; Zhu C; Zhu J; Qin X
    Oncol Lett; 2020 Aug; 20(2):1423-1431. PubMed ID: 32724385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-canonical targets play an important role in microRNA stability control mechanisms.
    Park JH; Shin C
    BMB Rep; 2017 Apr; 50(4):158-159. PubMed ID: 28228216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA helicase A is not required for RISC activity.
    Liang XH; Crooke ST
    Biochim Biophys Acta; 2013 Oct; 1829(10):1092-101. PubMed ID: 23895878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overexpression of human Argonaute2 inhibits cell and tumor growth.
    Zhang X; Graves P; Zeng Y
    Biochim Biophys Acta; 2013 Mar; 1830(3):2553-61. PubMed ID: 23201202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-alpha converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma.
    Ringel J; Jesnowski R; Moniaux N; Lüttges J; Ringel J; Choudhury A; Batra SK; Klöppel G; Löhr M
    Cancer Res; 2006 Sep; 66(18):9045-53. PubMed ID: 16982746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3.
    Wang C; Liu P; Wu H; Cui P; Li Y; Liu Y; Liu Z; Gou S
    Oncotarget; 2016 Mar; 7(12):14912-24. PubMed ID: 26908446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of Gsdf leads to a dysregulation of Igf2bp3-mediated oocyte development in medaka.
    Wu X; Zhang Y; Xu S; Chang Y; Ye Y; Guo A; Kang Y; Guo H; Xu H; Chen L; Zhao X; Guan G
    Gen Comp Endocrinol; 2019 Jun; 277():122-129. PubMed ID: 30951723
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA:RNA interaction in ternary complexes resolved by chemical probing.
    Banijamali E; Baronti L; Becker W; Sajkowska-Kozielewicz JJ; Huang T; Palka C; Kosek D; Sweetapple L; Müller J; Stone MD; Andersson ER; Petzold K
    RNA; 2023 Mar; 29(3):317-329. PubMed ID: 36617673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Regulation of microRNA Activity in Stress].
    Funikov SY; Zatcepina OG
    Mol Biol (Mosk); 2017; 51(4):561-572. PubMed ID: 28900074
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3.
    Wang S; Chim B; Su Y; Khil P; Wong M; Wang X; Foroushani A; Smith PT; Liu X; Li R; Ganesan S; Kanellopoulou C; Hafner M; Muljo SA
    Genes Dev; 2019 Aug; 33(15-16):1048-1068. PubMed ID: 31221665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimized infrared photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (IR-PAR-CLIP) protocol identifies novel IGF2BP3-interacting RNAs in colon cancer cells.
    Anisimova AS; Karagöz GE
    RNA; 2023 Nov; 29(11):1818-1836. PubMed ID: 37582618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1.
    Gu W; Katz Z; Wu B; Park HY; Li D; Lin S; Wells AL; Singer RH
    J Cell Sci; 2012 Jan; 125(Pt 1):81-91. PubMed ID: 22266909
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease.
    Santovito D; Weber C
    Nat Rev Cardiol; 2022 Sep; 19(9):620-638. PubMed ID: 35304600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypoxia increases the biogenesis of IGF2BP3-bound circular RNAs.
    Kaushik K; Kumar H; Mehta S; Palanichamy JK
    Mol Biol Rep; 2024 Feb; 51(1):288. PubMed ID: 38329630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.