These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27211489)

  • 21. Evidence that mechanisms of fin development evolved in the midline of early vertebrates.
    Freitas R; Zhang G; Cohn MJ
    Nature; 2006 Aug; 442(7106):1033-7. PubMed ID: 16878142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5'Hox, Gli3, and Shh.
    Tanaka M
    Dev Biol; 2016 May; 413(1):1-7. PubMed ID: 26992366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway.
    Jin EJ; Lee SY; Choi YA; Jung JC; Bang OS; Kang SS
    Mol Cells; 2006 Dec; 22(3):353-9. PubMed ID: 17202865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin.
    Wehner D; Cizelsky W; Vasudevaro MD; Ozhan G; Haase C; Kagermeier-Schenk B; Röder A; Dorsky RI; Moro E; Argenton F; Kühl M; Weidinger G
    Cell Rep; 2014 Feb; 6(3):467-81. PubMed ID: 24485658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone morphogenetic protein regulation of forkhead/winged helix transcription factor Foxc2 (Mfh1) in a murine mesodermal cell line C1 and in skeletal precursor cells.
    Nifuji A; Miura N; Kato N; Kellermann O; Noda M
    J Bone Miner Res; 2001 Oct; 16(10):1765-71. PubMed ID: 11585339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the Lunate-Shaped Caudal Fin in White Shark Embryos.
    Tomita T; Toda M; Miyamoto K; Oka SI; Ueda K; Sato K
    Anat Rec (Hoboken); 2018 Jun; 301(6):1068-1073. PubMed ID: 29316367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dot-stripe Turing model of joint patterning in the tetrapod limb.
    Scoones JC; Hiscock TW
    Development; 2020 Apr; 147(8):. PubMed ID: 32127348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations in anterior-posterior patterning and its accompanying changes along the proximal-distal axis during the fin-to-limb transition.
    Tanaka M
    Genesis; 2018 Jan; 56(1):. PubMed ID: 28834131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bmp-signaling and the finfold size in zebrafish: implications for the fin-to-limb transition.
    Cadete F; Francisco M; Freitas R
    Evolution; 2023 Apr; 77(5):1262-1271. PubMed ID: 36891971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Villification in the mouse: Bmp signals control intestinal villus patterning.
    Walton KD; Whidden M; Kolterud Å; Shoffner SK; Czerwinski MJ; Kushwaha J; Parmar N; Chandhrasekhar D; Freddo AM; Schnell S; Gumucio DL
    Development; 2016 Feb; 143(3):427-36. PubMed ID: 26721501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional analysis of limb enhancers in the developing fin.
    Booker BM; Murphy KK; Ahituv N
    Dev Genes Evol; 2013 Nov; 223(6):395-9. PubMed ID: 24068387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digits and fin rays share common developmental histories.
    Nakamura T; Gehrke AR; Lemberg J; Szymaszek J; Shubin NH
    Nature; 2016 Sep; 537(7619):225-228. PubMed ID: 27533041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordinated expression of noggin and bone morphogenetic proteins (BMPs) during early skeletogenesis and induction of noggin expression by BMP-7.
    Nifuji A; Noda M
    J Bone Miner Res; 1999 Dec; 14(12):2057-66. PubMed ID: 10620065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity.
    Malkmus J; Ramos Martins L; Jhanwar S; Kircher B; Palacio V; Sheth R; Leal F; Duchesne A; Lopez-Rios J; Peterson KA; Reinhardt R; Onimaru K; Cohn MJ; Zuniga A; Zeller R
    Nat Commun; 2021 Sep; 12(1):5557. PubMed ID: 34548488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of EphA4 in the lesser spotted catshark identifies a primitive gnathostome expression pattern and reveals co-option during evolution of shark-specific morphology.
    Freitas R; Cohn MJ
    Dev Genes Evol; 2004 Sep; 214(9):466-72. PubMed ID: 15300436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins.
    Tulenko FJ; McCauley DW; Mackenzie EL; Mazan S; Kuratani S; Sugahara F; Kusakabe R; Burke AC
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11899-904. PubMed ID: 23818600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data.
    Abbasi AA
    Dev Dyn; 2011 May; 240(5):1005-16. PubMed ID: 21337665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds.
    Bénazet JD; Pignatti E; Nugent A; Unal E; Laurent F; Zeller R
    Development; 2012 Nov; 139(22):4250-60. PubMed ID: 23034633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Polycomb group protein Ring1b is essential for pectoral fin development.
    van der Velden YU; Wang L; van Lohuizen M; Haramis AP
    Development; 2012 Jun; 139(12):2210-20. PubMed ID: 22619390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The making of differences between fins and limbs.
    Yano T; Tamura K
    J Anat; 2013 Jan; 222(1):100-13. PubMed ID: 23256837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.