These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27211658)

  • 1. Sequential fungal fermentation-biotransformation process to produce a red pigment from sclerotiorin.
    Corrêia Gomes D; Takahashi JA
    Food Chem; 2016 Nov; 210():355-61. PubMed ID: 27211658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants.
    Mapari SA; Meyer AS; Thrane U
    J Agric Food Chem; 2006 Sep; 54(19):7027-35. PubMed ID: 16968059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species.
    Mapari SA; Hansen ME; Meyer AS; Thrane U
    J Agric Food Chem; 2008 Nov; 56(21):9981-9. PubMed ID: 18841978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems.
    Mapari SA; Meyer AS; Thrane U
    J Agric Food Chem; 2009 Jul; 57(14):6253-61. PubMed ID: 19534525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal polyketide azaphilone pigments as future natural food colorants?
    Mapari SA; Thrane U; Meyer AS
    Trends Biotechnol; 2010 Jun; 28(6):300-7. PubMed ID: 20452692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azaphilones from the Marine Sponge-Derived Fungus
    Jia Q; Du Y; Wang C; Wang Y; Zhu T; Zhu W
    Mar Drugs; 2019 Apr; 17(5):. PubMed ID: 31052279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filamentous fungi are large-scale producers of pigments and colorants for the food industry.
    Dufossé L; Fouillaud M; Caro Y; Mapari SA; Sutthiwong N
    Curr Opin Biotechnol; 2014 Apr; 26():56-61. PubMed ID: 24679259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common food colorants and allergic reactions in children: Myth or reality?
    Feketea G; Tsabouri S
    Food Chem; 2017 Sep; 230():578-588. PubMed ID: 28407952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and antifungal activity of novel sclerotiorin analogues.
    Lin L; Mulholland N; Wu QY; Beattie D; Huang SW; Irwin D; Clough J; Gu YC; Yang GF
    J Agric Food Chem; 2012 May; 60(18):4480-91. PubMed ID: 22439963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum.
    Raina S; Odell M; Keshavarz T
    J Biotechnol; 2010 Jul; 148(2-3):91-8. PubMed ID: 20438771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation.
    Chen G; Bei Q; Huang T; Wu Z
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):117-126. PubMed ID: 29098409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring colorant production by amazonian filamentous fungi: Stability and applications.
    Oliveira LA; Sanches MA; Segundo WOPF; Santiago PAL; Lima RQ; Cortez ACA; Souza ÉS; Lima MP; Lima ES; Koolen HHF; Dufossé L; Souza JVB
    J Basic Microbiol; 2024 Feb; 64(2):e2300444. PubMed ID: 38051942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique processes yielding pure azaphilones in Talaromyces atroroseus.
    Tolborg G; Ødum ASR; Isbrandt T; Larsen TO; Workman M
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):603-613. PubMed ID: 31637495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and biological activities of yellow pigments from Monascus fungi.
    Chen G; Wu Z
    World J Microbiol Biotechnol; 2016 Aug; 32(8):136. PubMed ID: 27357404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (-)-Sclerotiorin from an unidentified marine fungus as an anti-meiotic and anti-fungal agent.
    Bao L; Xu Z; Niu SB; Namikoshi M; Kobayashi H; Liu HW
    Nat Prod Commun; 2010 Nov; 5(11):1789-92. PubMed ID: 21213982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change of Monascus pigment metabolism and secretion in different extractive fermentation process.
    Chen G; Tang R; Tian X; Qin P; Wu Z
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):857-866. PubMed ID: 28239774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation.
    Shi K; Song D; Chen G; Pistolozzi M; Wu Z; Quan L
    J Biosci Bioeng; 2015 Aug; 120(2):145-54. PubMed ID: 25648278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic of orange pigment production from Monascus ruber on submerged fermentation.
    Vendruscolo F; Schmidell W; de Oliveira D; Ninow JL
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):115-121. PubMed ID: 27687221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants.
    Mapari SA; Nielsen KF; Larsen TO; Frisvad JC; Meyer AS; Thrane U
    Curr Opin Biotechnol; 2005 Apr; 16(2):231-8. PubMed ID: 15831392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyaromatic Resin HP-20 Induced Accumulation of Intermediate Azaphilones in
    Lim YJ; Lee DW; Choi JJ; Park SH; Kwon HJ
    J Microbiol Biotechnol; 2019 Jun; 29(6):897-904. PubMed ID: 31091861
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.