These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27211782)

  • 1. Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics.
    Yamasaki T; Idehara K; Xin X
    J Biomech; 2016 Jul; 49(10):2015-2022. PubMed ID: 27211782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP; Crespo MJ; Braidot AA
    Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 'cheap' optimal control approach to estimate muscle forces in musculoskeletal systems.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2006; 39(10):1787-95. PubMed ID: 16033695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements.
    Happee R
    J Biomech; 1994 Jul; 27(7):953-60. PubMed ID: 8063845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.
    Valentin J; Sprenger M; Pflüger D; Röhrle O
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
    Blajer W; Dziewiecki K; Mazur Z
    Comput Methods Biomech Biomed Engin; 2015; 18(4):362-75. PubMed ID: 23758087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.
    Moissenet F; Chèze L; Dumas R
    J Biomech Eng; 2012 Jun; 134(6):064503. PubMed ID: 22757507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Predictive Model for Lifting by Integrating Skeletal Motion Prediction With an OpenSim Musculoskeletal Model.
    Zaman R; Xiang Y; Rakshit R; Yang J
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1111-1122. PubMed ID: 34550877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers.
    Robert T; Causse J; Monnier G
    J Biomech; 2013 Sep; 46(13):2220-7. PubMed ID: 23891311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.